265 research outputs found

    Design and characterization of the POLARBEAR-2b and POLARBEAR-2c cosmic microwave background cryogenic receivers

    Full text link
    The POLARBEAR-2/Simons Array Cosmic Microwave Background (CMB) polarization experiment is an upgrade and expansion of the existing POLARBEAR-1 (PB-1) experiment, located in the Atacama desert in Chile. Along with the CMB temperature and EE-mode polarization anisotropies, PB-1 and the Simons Array study the CMB BB-mode polarization anisotropies produced at large angular scales by inflationary gravitational waves, and at small angular scales by gravitational lensing. These measurements provide constraints on various cosmological and particle physics parameters, such as the tensor-to-scalar ratio rr, and the sum of the neutrino masses. The Simons Array consists of three 3.5 m diameter telescopes with upgraded POLARBEAR-2 (PB-2) cryogenic receivers, named PB-2a, -2b, and -2c. PB-2a and -2b will observe the CMB over multiple bands centered at 95 GHz and 150 GHz, while PB-2c will observe at 220 GHz and 270 GHz, which will enable enhanced foreground separation and de-lensing. Each Simons Array receiver consists of two cryostats which share the same vacuum space: an optics tube containing the cold reimaging lenses and Lyot stop, infrared-blocking filters, and cryogenic half-wave plate; and a backend which contains the focal plane detector array, cold readout components, and millikelvin refrigerator. Each PB-2 focal plane array is comprised of 7,588 dual-polarization, multi-chroic, lenslet- and antenna-coupled, Transition Edge Sensor (TES) bolometers which are cooled to 250 mK and read out using Superconducting Quantum Interference Devices (SQUIDs) through a digital frequency division multiplexing scheme with a multiplexing factor of 40. In this work we describe progress towards commissioning the PB-2b and -2c receivers including cryogenic design, characterization, and performance of both the PB-2b and -2c backend cryostats.Comment: 20 page

    Disfluency in dialogue:an intentional signal from the speaker?

    Get PDF
    Disfluency is a characteristic feature of spontaneous human speech, commonly seen as a consequence of problems with production. However, the question remains open as to why speakers are disfluent: Is it a mechanical by-product of planning difficulty, or do speakers use disfluency in dialogue to manage listeners' expectations? To address this question, we present two experiments investigating the production of disfluency in monologue and dialogue situations. Dialogue affected the linguistic choices made by participants, who aligned on referring expressions by choosing less frequent names for ambiguous images where those names had previously been mentioned. However, participants were no more disfluent in dialogue than in monologue situations, and the distribution of types of disfluency used remained constant. Our evidence rules out at least a straightforward interpretation of the view that disfluencies are an intentional signal in dialogue. © 2012 Psychonomic Society, Inc

    Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    Get PDF
    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood–brain barrier to the brain and the central nervous system

    The effects of inclination on a two stage pulse tube cryocooler for use with a ground based observatory

    Get PDF
    Abstract Ground-based observatories across a wide range of wavelengths implement cryogenic cooling techniques to increase the sensitivity of instruments and enable low temperature detector technologies. Commercial pulse tube cryocoolers (PTCs) are frequently used to provide 40 K and 4 K stages as thermal shells in scientific instruments. However, PTC operation is dependent on gravity, giving rise to changes in cooling capacity over the operational tilt range of pointed telescopes. We present a study of the performance of a two stage PTC with a cooling capacity of 1.8 W at 4.2 K and 50 W at 45 K (Cryomech PT420-RM) from 0 - 55 ° away from vertical to probe capacity as a function of angle over a set of realistic thermal loading conditions. Our study provides a method to extract temperature estimates given predicted thermal loading conditions across the angular range sampled. We then discuss the design implications for current and future tilted cryogenic systems

    The Simons Observatory: A fully remote controlled calibration system with a sparse wire grid for cosmic microwave background telescopes

    Full text link
    For cosmic microwave background (CMB) polarization observations, calibration of detector polarization angles is essential. We have developed a fully remote controlled calibration system with a sparse wire grid that reflects linearly polarized light along the wire direction. The new feature is a remote-controlled system for regular calibration, which has not been possible in sparse wire grid calibrators in past experiments. The remote control can be achieved by two electric linear actuators that load or unload the sparse wire grid into a position centered on the optical axis of a telescope between the calibration time and CMB observation. Furthermore, the sparse wire grid can be rotated by a motor. A rotary encoder and a gravity sensor are installed on the sparse wire grid to monitor the wire direction. They allow us to achieve detector angle calibration with expected systematic error of 0.08∘0.08^{\circ}. The calibration system will be installed in small-aperture telescopes at Simons Observatory

    CMB-S4 Science Book, First Edition

    Full text link
    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales
    • …
    corecore