90 research outputs found
Null Cones in Schwarzschild Geometry
Light cones of Schwarzschild geometry are studied in connection to the Null
Surface Formulation and gravitational lensing. The paper studies the light cone
cut function's singularity structure, gives exact gravitational lensing
equations, and shows that the "pseudo-Minkowski" coordinates are well defined
within the model considered.Comment: 31 pages, 5 figure
Fractal entropy of a chain of nonlinear oscillators
We study the time evolution of a chain of nonlinear oscillators. We focus on
the fractal features of the spectral entropy and analyze its characteristic
intermediate timescales as a function of the nonlinear coupling. A Brownian
motion is recognized, with an analytic power-law dependence of its diffusion
coefficient on the coupling.Comment: 6 pages, 3 figures, revised version to appear in Phys. Rev.
Statistical mechanics of Fofonoff flows in an oceanic basin
We study the minimization of potential enstrophy at fixed circulation and
energy in an oceanic basin with arbitrary topography. For illustration, we
consider a rectangular basin and a linear topography h=by which represents
either a real bottom topography or the beta-effect appropriate to oceanic
situations. Our minimum enstrophy principle is motivated by different arguments
of statistical mechanics reviewed in the article. It leads to steady states of
the quasigeostrophic (QG) equations characterized by a linear relationship
between potential vorticity q and stream function psi. For low values of the
energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a
strong westward jet. For large values of the energy, we obtain geometry induced
phase transitions between monopoles and dipoles similar to those found by
Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of
topography. In the presence of topography, we recover and confirm the results
obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a
different formalism. In addition, we introduce relaxation equations towards
minimum potential enstrophy states and perform numerical simulations to
illustrate the phase transitions in a rectangular oceanic basin with linear
topography (or beta-effect).Comment: 26 pages, 28 figure
Systems of Hess-Appel'rot type
We construct higher-dimensional generalizations of the classical
Hess-Appel'rot rigid body system. We give a Lax pair with a spectral parameter
leading to an algebro-geometric integration of this new class of systems, which
is closely related to the integration of the Lagrange bitop performed by us
recently and uses Mumford relation for theta divisors of double unramified
coverings. Based on the basic properties satisfied by such a class of systems
related to bi-Poisson structure, quasi-homogeneity, and conditions on the
Kowalevski exponents, we suggest an axiomatic approach leading to what we call
the "class of systems of Hess-Appel'rot type".Comment: 40 pages. Comm. Math. Phys. (to appear
Quasihomogeneity of isolated singularities and logarithmic cohomology
We characterize quasihomogeneity of isolated singularities by the injectivity
of the map induced by the first differential of the logarithmic differential
complex in the top local cohomology supported in the singular point.Comment: 5 page
Quantum Arnol'd Diffusion in a Simple Nonlinear System
We study the fingerprint of the Arnol'd diffusion in a quantum system of two
coupled nonlinear oscillators with a two-frequency external force. In the
classical description, this peculiar diffusion is due to the onset of a weak
chaos in a narrow stochastic layer near the separatrix of the coupling
resonance. We have found that global dependence of the quantum diffusion
coefficient on model parameters mimics, to some extent, the classical data.
However, the quantum diffusion happens to be slower that the classical one.
Another result is the dynamical localization that leads to a saturation of the
diffusion after some characteristic time. We show that this effect has the same
nature as for the studied earlier dynamical localization in the presence of
global chaos. The quantum Arnol'd diffusion represents a new type of quantum
dynamics and can be observed, for example, in 2D semiconductor structures
(quantum billiards) perturbed by time-periodic external fields.Comment: RevTex, 11 pages including 12 ps-figure
Asymptotic singularities of planar parallel 3-RPR manipulators
We study the limits of singularities of planar parallel 3-RPR manipulators as the lengths of their legs tend to infinity, paying special attention to the presence of cusps. These asymptotic singularities govern the kinematic behavior of the manipulator in a rather large portion of its workspace
Finite time singularities in a class of hydrodynamic models
Models of inviscid incompressible fluid are considered, with the kinetic
energy (i.e., the Lagrangian functional) taking the form in 3D Fourier representation, where
is a constant, . Unlike the case (the usual Eulerian
hydrodynamics), a finite value of results in a finite energy for a
singular, frozen-in vortex filament. This property allows us to study the
dynamics of such filaments without the necessity of a regularization procedure
for short length scales. The linear analysis of small symmetrical deviations
from a stationary solution is performed for a pair of anti-parallel vortex
filaments and an analog of the Crow instability is found at small wave-numbers.
A local approximate Hamiltonian is obtained for the nonlinear long-scale
dynamics of this system. Self-similar solutions of the corresponding equations
are found analytically. They describe the formation of a finite time
singularity, with all length scales decreasing like ,
where is the singularity time.Comment: LaTeX, 17 pages, 3 eps figures. This version is close to the journal
pape
Reversible maps and composites of involutions in groups of piecewise linear homeomorphisms of the real line
An element of a group is reversible if it is conjugate to its own inverse, and it is strongly reversible if it is conjugate to its inverse by an involution. A group element is strongly reversible if and only if it can be expressed as a composite of two involutions. In this paper the reversible maps, the strongly reversible maps, and those maps that can be expressed as a composite of involutions are determined in certain groups of piecewise linear homeomorphisms of the real line
Foliations of Isonergy Surfaces and Singularities of Curves
It is well known that changes in the Liouville foliations of the isoenergy
surfaces of an integrable system imply that the bifurcation set has
singularities at the corresponding energy level. We formulate certain
genericity assumptions for two degrees of freedom integrable systems and we
prove the opposite statement: the essential critical points of the bifurcation
set appear only if the Liouville foliations of the isoenergy surfaces change at
the corresponding energy levels. Along the proof, we give full classification
of the structure of the isoenergy surfaces near the critical set under our
genericity assumptions and we give their complete list using Fomenko graphs.
This may be viewed as a step towards completing the Smale program for relating
the energy surfaces foliation structure to singularities of the momentum
mappings for non-degenerate integrable two degrees of freedom systems.Comment: 30 pages, 19 figure
- …