15 research outputs found
T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex
Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iTreg) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iTreg TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition
Islet-Specific CTL Cloned from a Type 1 Diabetes Patient Cause Beta-Cell Destruction after Engraftment into HLAA2 Transgenic NOD/SCID/IL2RG Null Mice
Despite increasing evidence that autoreactive CD8 T-cells are involved in both the initiation of type 1 diabetes (T1D) and the destruction of beta-cells, direct evidence for their destructive role in-vivo is lacking. To address a destructive role for autoreactive CD8 T-cells in human disease, we assessed the pathogenicity of a CD8 T-cell clone derived from a T1D donor and specific for an HLA-A2-restricted epitope of islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP). HLA-A2/IGRP tetramer staining revealed a higher frequency of IGRP-specific CD8 T-cells in the peripheral blood of recent onset human individuals than of healthy donors. IGRP(265-273)-specific CD8 T-cells that were cloned from the peripheral blood of a recent onset T1D individual were shown to secrete IFNγ and Granzyme B after antigen-specific activation and lyse HLA-A2-expressing murine islets in-vitro. Lytic capacity was also demonstrated in-vivo by specific killing of peptide-pulsed target cells. Using the HLA-A2 NOD-scid IL2rγ(null) mouse model, HLA-A2-restricted IGRP-specific CD8 T-cells induced a destructive insulitis. Together, this is the first evidence that human HLA-restricted autoreactive CD8 T-cells target HLA-expressing beta-cells in-vivo, demonstrating the translational value of humanized mice to study mechanisms of disease and therapeutic intervention strategies
Alternative splicing and differential expression of the islet autoantigen IGRP between pancreas and thymus contributes to immunogenicity of pancreatic islets but not diabetogenicity in humans
Thymic expression of self-antigens during T-lymphocyte development is believed to be crucial for preventing autoimmunity. It has been suggested that G6PC2, the gene encoding islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), is differentially spliced between pancreatic beta cells and the thymus. This may contribute to incomplete elimination of IGRP-specific T lymphocytes in the thymus, predisposing individuals to type 1 diabetes. We tested whether specific splice variation in islets vs thymus correlates with loss of tolerance to IGRP in type 1 diabetes. Expression of G6PC2 splice variants was compared among thymus, purified medullary thymic epithelial cells and pancreatic islets by RT-PCR. Differential immunogenicity of IGRP splice variants was tested in patients and healthy individuals for autoantibodies and specific cytotoxic T lymphocytes using radiobinding assays and HLA class I multimers, respectively. Previously reported G6PC2 splice variants, including full-length G6PC2, were confirmed, albeit that they occurred in both pancreas and thymus, rather than islets alone. Yet, their expression levels were profoundly greater in islets than in thymus. Moreover, three novel G6PC2 variants were discovered that occur in islets only, leading to protein truncations, frame shifts and neo-sequences prone to immunogenicity. However, autoantibodies to novel or known IGRP splice variants did not differ between patients and healthy individuals, and similar frequencies of IGRP-specific cytotoxic T lymphocytes could be detected in both patients with type 1 diabetes and healthy individuals. We propose that post-transcriptional variation of tissue-specific self-proteins may affect negative thymic selection, although this need not necessarily lead to diseas
MICA marks additional risk factors for Type 1 diabetes on extended HLA haplotypes: An association and meta-analysis
The association of the HLA complex on chromosome 6 does not explain total linkage of the HLA region to Type 1 Diabetes (T1D), leading to the hypothesis that there may be additional causal genes in the HLA region for immune-related disorders. Reports on the MHC Class I chain-related A (MICA) gene as candidate for association with T1D are contradicting. We investigated whether variation in MICA is associated to T1D in a cohort of 350 unrelated individuals with juvenile-onset T1D and 540 control subjects, followed by a meta-analysis of 14 studies. We also investigated an HLA-independent association for MICA with T1D. In our case-control study, we found that the MICA*A5 variant was significantly associated with an increased risk for T1D, while MICA*A6 was significantly associated with a decreased risk that was confirmed by our meta-analysis. However, the meta-analysis did not show an association of MICA*A5 T1D. Analysis of MICA alleles conditional on T1D-associated high-risk MHC class II haplotypes revealed that MICA*A6 was associated with an increased risk for T1D when this marker co-occurred with HLA DQ2DR17 T1D risk-haplotypes. In contrast, MICA*A6 reduced the risk from the HLA DQ8DR4 T1D-risk haplotype. Moreover, MICA*A9 showed a significant association to increased risk for T1D on DQ8DR4 haplotypes. Co-inheritance of MICA*A6 with the HLA DQ2DR17 haplotype in T1D indicates this haplotype may carry the additional genetic factors for T1D, but our study does not support an independent association between MICA variants and T1D. (c) 2007 Elsevier Ltd. All rights reserved
Association analysis of myosin IXB and type 1 diabetes
To date, seven studies have provided evidence for an association between the gene encoding for myosin IXB (MYO9B) and celiac disease (CD), and inflammatory bowel diseases, including single nucleotide polymorphisms (SNPs) rs2305767, rs1457092, and rs2305764. We investigated whether MYO9B is associated with T1D. The three SNPs were genotyped in Dutch samples from 288 T1D patients and 1615 controls. The A allele of SNP rs2305767A>G showed some evidence of association with T1D (nominal p for genotype = 0.06; OR carrier = 1.51,95% CI = 1.04-2.19), but not in British samples from 4301 case patients and 4706 controls (p = 0.53), or when the Dutch and UK data were pooled (N patients = 4582, N controls = 6224; Mantel-Hansel p=0.83). Furthermore, the nonsynonymous rs1545620 C>A SNP that has been associated with the inflammatory bowel disease, showed no association with T1D in British case-control set (p = 0.57). We conclude that MYO9B might not be a strong determinant of T1D, although there was some association in our initial Dutch study. Further studies are needed to evaluate the role of MYO9B in T1D. (C) 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved
Presence of immunogenic alternatively spliced insulin gene product in human pancreatic delta cells
Aims/hypothesis: Transcriptome analyses revealed insulin-gene-derived transcripts in non-beta endocrine islet cells. We studied alternative splicing of human INS mRNA in pancreatic islets. Methods: Alternative splicing of insulin pre-mRNA was determined by PCR analysis performed on human islet RNA and single-cell RNA-seq analysis. Antisera were generated to detect insulin variants in human pancreatic tissue using immunohistochemistry, electron microscopy and single-cell western blot to confirm the expression of insulin variants. Cytotoxic T lymphocyte (CTL) activation was determined by MIP-1β release. Results: We identified an alternatively spliced INS product. This variant encodes the complete insulin signal peptide and B chain and an alternative C-terminus that largely overlaps with a previously identified defective ribosomal product of INS. Immunohistochemical analysis revealed that the translation product of this INS-derived splice transcript was detectable in somatostatin-producing delta cells but not in beta cells; this was confirmed by light and electron microscopy. Expression of this alternatively spliced INS product activated preproinsulin-specific CTLs in vitro. The exclusive presence of this alternatively spliced INS product in delta cells may be explained by its clearance from beta cells by insulin-degrading enzyme capturing its insulin B chain fragment and a lack of insulin-degrading enzyme expression in delta cells. Conclusions/interpretation: Our data demonstrate that delta cells can express an INS product derived from alternative splicing, containing both the diabetogenic insulin signal peptide and B chain, in their secretory granules. We propose that this alternative INS product may play a role in islet autoimmunity and pathology, as well as endocrine or paracrine function or islet development and endocrine destiny, and transdifferentiation between endocrine cells. INS promoter activity is not confined to beta cells and should be used with care when assigning beta cell identity and selectivity. Data availability: The full EM dataset is available via www.nanotomy.org (for review: http://www.nanotomy.org/OA/Tienhoven2021SUB/6126-368/). Single-cell RNA-seq data was made available by Segerstolpe et al [13] and can be found at https://sandberglab.se/pancreas. The RNA and protein sequence of INS-splice was uploaded to GenBank (BankIt2546444 INS-splice OM489474). Graphical abstract: [Figure not available: see fulltext.
IGRP-specific T-cells lyse HLA-A2-positive islets <i>in-vitro.</i>
<p>Data represent the percent specific cytotoxicity against the indicated targets by IGRP<sub>265–273</sub>-specific CD8 T cells. HLA-A2-restricted, tumor-antigen-specific CD8 T-cells were used as a control. <sup>51</sup>Cr release from islets cultured in medium alone (<i>i.e</i>. spontaneous release) for each target was measured in 9 independent wells to calculate specific cytotoxicity as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0049213#s4" target="_blank">Materials and Methods</a>. Data are representative of 3 independent experiments.</p>*<p>indicates a significant difference (p<0.01) in cytotoxicity against NOD-<i>scid</i> islets tested at the same E:T ratio; <sup>$</sup> indicates a significant difference (p<0.05) in cytotoxicity against NOD-<i>scid HHD</i> islets between IGRP-specific CD8 T-cells and control T-cells.</p