30 research outputs found
Maternal‐Fetal DNA Admixture Is Associated with Intrapartum Mother‐to‐Child Transmission of HIV‐1 in Blantyre, Malawi
The mechanism of HIV-1 mother-to-child transmission (MTCT) is not well described
The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres
We are now on a clear trajectory for improvements in exoplanet observations
that will revolutionize our ability to characterize their atmospheric
structure, composition, and circulation, from gas giants to rocky planets.
However, exoplanet atmospheric models capable of interpreting the upcoming
observations are often limited by insufficiencies in the laboratory and
theoretical data that serve as critical inputs to atmospheric physical and
chemical tools. Here we provide an up-to-date and condensed description of
areas where laboratory and/or ab initio investigations could fill critical gaps
in our ability to model exoplanet atmospheric opacities, clouds, and chemistry,
building off a larger 2016 white paper, and endorsed by the NAS Exoplanet
Science Strategy report. Now is the ideal time for progress in these areas, but
this progress requires better access to, understanding of, and training in the
production of spectroscopic data as well as a better insight into chemical
reaction kinetics both thermal and radiation-induced at a broad range of
temperatures. Given that most published efforts have emphasized relatively
Earth-like conditions, we can expect significant and enlightening discoveries
as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape
HIV-1 Populations in Semen Arise through Multiple Mechanisms
HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus
CAPRISA 004 tenofovir microbicide trial: no impact of tenofovir gel on the HIV transmission bottleneck.
Alterations of the genital mucosal barrier may influence the number of viruses transmitted from a human immunodeficiency virus–infected source host to the newly infected individual. We used heteroduplex tracking assay and single-genome sequencing to investigate the effect of a tenofovir-based microbicide gel on the transmission bottleneck in women who seroconverted during the CAPRISA 004 microbicide trial. Seventy-seven percent (17 of 22; 95% confidence interval [CI], 56%–90%) of women in the tenofovir gel arm were infected with a single virus compared with 92% (13 of 14; 95% CI, 67%–>99%) in the placebo arm (P = .37). Tenofovir gel had no discernable impact on the transmission bottleneck
HIV-1 Populations in Semen Arise through Multiple Mechanisms
HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the
Great Observatory of the 2030s. For the first time in human history,
technologies have matured sufficiently to enable an affordable space-based
telescope mission capable of discovering and characterizing Earthlike planets
orbiting nearby bright sunlike stars in order to search for signs of
habitability and biosignatures. Such a mission can also be equipped with
instrumentation that will enable broad and exciting general astrophysics and
planetary science not possible from current or planned facilities. HabEx is a
space telescope with unique imaging and multi-object spectroscopic capabilities
at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities
allow for a broad suite of compelling science that cuts across the entire NASA
astrophysics portfolio. HabEx has three primary science goals: (1) Seek out
nearby worlds and explore their habitability; (2) Map out nearby planetary
systems and understand the diversity of the worlds they contain; (3) Enable new
explorations of astrophysical systems from our own solar system to external
galaxies by extending our reach in the UV through near-IR. This Great
Observatory science will be selected through a competed GO program, and will
account for about 50% of the HabEx primary mission. The preferred HabEx
architecture is a 4m, monolithic, off-axis telescope that is
diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two
starlight suppression systems: a coronagraph and a starshade, each with their
own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information
about HabEx can be found here: https://www.jpl.nasa.gov/habex