4 research outputs found

    Bronchoscopy using a head-mounted mixed reality device—a phantom study and a first in-patient user experience

    Get PDF
    Background: Bronchoscopy for peripheral lung lesions may involve image sources such as computed tomography (CT), fluoroscopy, radial endobronchial ultrasound (R-EBUS), and virtual/electromagnetic navigation bronchoscopy. Our objective was to evaluate the feasibility of replacing these multiple monitors with a head-mounted display (HMD), always providing relevant image data in the line of sight of the bronchoscopist.Methods: A total of 17 pulmonologists wearing a HMD (Microsoft® HoloLens 2) performed bronchoscopy with electromagnetic navigation in a lung phantom. The bronchoscopists first conducted an endobronchial inspection and navigation to the target, followed by an endobronchial ultrasound bronchoscopy. The HMD experience was evaluated using a questionnaire. Finally, the HMD was used in bronchoscopy inspection and electromagnetic navigation of two patients presenting with hemoptysis.Results: In the phantom study, the perceived quality of video and ultrasound images was assessed using a visual analog scale, with 100% representing optimal image quality. The score for video quality was 58% (95% confidence interval [CI] 48%–68%) and for ultrasound image quality, the score was 43% (95% CI 30%–56%). Contrast, color rendering, and resolution were all considered suboptimal. Despite adjusting the brightness settings, video image rendering was considered too dark. Navigation to the target for biopsy sampling was accomplished by all participants, with no significant difference in procedure time between experienced and less experienced bronchoscopists. The overall system latency for the image stream was 0.33–0.35 s. Fifteen of the pulmonologists would consider using HoloLens for navigation in the periphery, and two would not consider using HoloLens in bronchoscopy at all. In the human study, bronchoscopy inspection was feasible for both patients.Conclusion: Bronchoscopy using an HMD was feasible in a lung phantom and in two patients. Video and ultrasound image quality was considered inferior to that of video monitors. HoloLens 2 was suboptimal for airway and mucosa inspection but may be adequate for virtual bronchoscopy navigation

    A novel clip-on device for electromagnetic tracking in endobronchial ultrasound bronchoscopy

    Get PDF
    Introduction: The established method for assessment of mediastinal and hilar lymph nodes is endobronchial ultrasound bronchoscopy (EBUS) with needle aspirations. Previously, we presented an electromagnetic navigation platform for this purpose. There were several issues with the permanent electromagnetic tracking (EMT) sensor attachment on the tip of the experimental EBUS bronchoscope. The purpose was to develop a device for on-site attachment of the EMT sensor. Material and methods: A clip-on EMT sensor attachment device was 3D-printed in Ultem™ and attached to an EBUS bronchoscope. A specially designed ultrasound probe calibration adapter was developed for on-site and quick probe calibration. Navigation accuracy was studied using a wire cross water phantom and clinical feasibility was tested in a healthy volunteer. Results: The device attached to the EBUS bronchoscope increased its diameter from 6.9 mm to 9.5 mm. Average preclinical navigation accuracy was 3.9 mm after adapter calibration. The maneuvering of the bronchoscope examining a healthy volunteer was adequate without harming the respiratory epithelium, and the device stayed firmly attached. Conclusion: Development, calibration and testing of a clip-on EMT sensor attachment device for EBUS bronchoscopy was successfully demonstrated. Acceptable accuracy results were obtained, and the device is ready to be tested in patient studies.BN/Liedewij Laan La

    Pleural Empyema Caused by Streptococcus intermedius and Fusobacterium nucleatum: A Distinct Entity of Pleural Infections

    Get PDF
    Background Many community-acquired pleural infections are caused by facultative and anaerobic bacteria from the human oral microbiota. The epidemiology, clinical characteristics, pathogenesis, and etiology of such infections are little studied. The aim of the present prospective multicenter cohort study was to provide a thorough microbiological and clinical characterization of such oral-type pleural infections and to improve our understanding of the underlying etiology and associated risk factors. Methods Over a 2-year period, we included 77 patients with community-acquired pleural infection, whereof 63 (82%) represented oral-type pleural infections. Clinical and anamnestic data were systematically collected, and patients were offered a dental assessment by an oral surgeon. Microbial characterizations were done using next-generation sequencing. Obtained bacterial profiles were compared with microbiology data from previous investigations on odontogenic infections, bacteremia after extraction of infected teeth, and community-acquired brain abscesses. Results From the oral-type pleural infections, we made 267 bacterial identifications representing 89 different species. Streptococcus intermedius and/or Fusobacterium nucleatum were identified as a dominant component in all infections. We found a high prevalence of dental infections among patients with oral-type pleural infection and demonstrate substantial similarities between the microbiology of such pleural infections and that of odontogenic infections, odontogenic bacteremia, and community-acquired brain abscesses. Conclusions Oral-type pleural infection is the most common type of community-acquired pleural infection. Current evidence supports hematogenous seeding of bacteria from a dental focus as the most important underlying etiology. Streptococcus intermedius and Fusobacterium nucleatum most likely represent key pathogens necessary for establishing the infection.publishedVersio
    corecore