14 research outputs found

    Probiotic<i> Bacillus subtilis</i> protects against α-synuclein aggregation in <i>C. elegans</i>

    Get PDF
    How the gut microbiome affects Parkinson's disease remains unclear. Goya et al. show that the probiotic B. subtilis strain PXN21 inhibits and clears α-synuclein aggregation in a C. elegans model. The bacterium acts via metabolites and biofilm formation to activate protective pathways in the host, including DAF-16/FOXO and sphingolipid metabolism.Fil: Goya, María Eugenia. University of Edinburgh; Reino UnidoFil: Xue, Feng. University of Edinburgh; Reino UnidoFil: Sampedro Torres Quevedo, Cristina. University of Edinburgh; Reino UnidoFil: Arnaouteli, Sofia. University Of Dundee; Reino UnidoFil: Riquelme Dominguez, Lourdes. University of Edinburgh; Reino UnidoFil: Romanowski, Andrés. University of Edinburgh; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Brydon, Jack. University of Edinburgh; Reino UnidoFil: Ball, Kathryn L.. University of Edinburgh; Reino UnidoFil: Stanley-Wall, Nicola R.. University Of Dundee; Reino UnidoFil: Doitsidou, Maria. University of Edinburgh; Reino Unid

    Lateral interactions govern self-assembly of the bacterial biofilm matrix protein BslA

    Get PDF
    The soil bacterium Bacillus subtilis is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the B. subtilis biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined. Our analysis revealed two conserved protein-protein interaction interfaces supporting BslA self-assembly into an infinite 2-dimensional lattice that fits previously determined transmission microscopy images. Molecular dynamics simulations and in vitro protein assays further support our model of BslA elastic film formation, while mutagenesis experiments highlight the importance of the identified interactions for biofilm structure. Based on this knowledge, YweA was engineered to form more stable elastic films and rescue biofilm structure in bslA deficient strains. These findings shed light on protein film assembly and will inform the development of BslA technologies which range from surface coatings to emulsions in fast-moving consumer goods.</p

    Lateral interactions govern self-assembly of the bacterial biofilm matrix protein BslA

    Get PDF
    The soil bacterium Bacillus subtilis is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the B. subtilis biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined. Our analysis revealed two conserved protein-protein interaction interfaces supporting BslA self-assembly into an infinite 2-dimensional lattice that fits previously determined transmission microscopy images. Molecular dynamics simulations and in vitro protein assays further support our model of BslA elastic film formation, while mutagenesis experiments highlight the importance of the identified interactions for biofilm structure. Based on this knowledge, YweA was engineered to form more stable elastic films and rescue biofilm structure in bslA deficient strains. These findings shed light on protein film assembly and will inform the development of BslA technologies which range from surface coatings to emulsions in fast-moving consumer goods.</p

    Bifunctionality of a biofilm matrix protein controlled by redox state

    Get PDF
    Significance The biofilm matrix is a critical target in the hunt for novel strategies to destabilize or stabilize biofilms. Knowledge of the processes controlling matrix assembly is therefore an essential prerequisite to exploitation. Here, we highlight that the complexity of the biofilm matrix is even higher than anticipated, with one matrix component making two independent functional contributions to the community. The influence the protein exerts is dependent on the local environmental properties, providing another dimension to consider during analysis. These findings add to the evidence that bacteria can evolve multifunctional uses for the extracellular matrix components.</jats:p

    Just in case it rains:building a hydrophobic biofilm the <i>Bacillus subtilis</i> way

    Get PDF
    Over the millennia, diverse species of bacteria have evolved multiple independent mechanisms to structure sessile biofilm communities that confer protection and stability to the inhabitants. The Gram-positive soil bacterium Bacillus subtilis biofilm presents as an architecturally complex, highly hydrophobic community that resists wetting by water, solvents, and biocides. This remarkable property is conferred by a small secreted protein called BslA, which self-assembles into an organized lattice at an interface. In the biofilm, production of BslA is tightly regulated and the resultant protein is secreted into the extracellular environment where it forms a very effective communal barrier allowing the resident B. subtilis cells to shelter under the protection of a protein raincoat
    corecore