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Abstract  

Biofilm formation is a process in which microbial cells aggregate to form collectives that are 

embedded in a self-produced extracellular matrix. Bacillus subtilis is a Gram-positive 

bacterium that is used to dissect the mechanisms controlling matrix production and the 

subsequent transition from a motile planktonic cell state to a sessile biofilm state. The collective 

nature of life in a biofilm allows emergent properties to manifest, and B. subtilis biofilms are 

linked with novel industrial uses as well as probiotic and biocontrol processes. In this Review, 

we outline the molecular details of the biofilm matrix and the regulatory pathways and external 

factors that control its production. We explore the beneficial outcomes associated with 

biofilms. Finally, we highlight major advances in our understanding of concepts of microbial 

evolution and community behaviour that have resulted from studies of the innate heterogeneity 

of biofilms.  
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[H1] Introduction 

Bacterial biofilms are a mode of collective living that confers emergent properties to 

the inhabitants of these communities1. A self-produced extracellular matrix that encapsulates 

the cells and facilitates their attachment to surfaces, among other functions, is a hallmark of 

biofilm formation2. The biofilm research field is fast moving due to the biological relevance of 

these multicellular consortia to an array of advantageous and detrimental effects in natural 

systems and human applications. 

Bacillus subtilis is a soil-dwelling, non-pathogenic, Gram-positive bacterium that is 

commonly found in association with plants and their rhizosphere. B. subtilis is a highly 

tractable microorganism for which a broad suite of genetic and molecular tools is available that 

facilitate in vitro manipulation and study. Consequently, B. subtilis has been the major model 

organism for the study of Gram-positive bacteria for many decades. Furthermore, B. subtilis 

has been exploited for several industrial applications, including the production of hydrolytic 

enzymes, fermentation of food and, most recently, as a probiotic3. 

The ability of B. subtilis to switch from a motile to a sessile state has been utilized to 

study biofilm formation. The undomesticated, ancestral isolate NCIB 3610 is widely studied 

to explore the three types of well-structured, three-dimensional biofilms that B. subtilis 

typically forms in vitro: a pellicle biofilm that develops at an air–liquid interface, a colony 

biofilm that develops at an air–solid interface and a submerged surface-attached biofilm4-6 

(Figure 1). B. subtilis also forms biofilms on biotic surfaces, including fungal hyphae7 and 

roots8 and leaves9 of plants. Furthermore, natural B. subtilis strains form pellicle biofilms on 

processed food products10. 

The B. subtilis extracellular matrix contains an exopolysaccharide (EPS) that is 

synthesised by the products of the 15-gene epsABCDEFGHIJKLMNO (epsA–O) operon4, 

protein fibres of TasA encoded by the tapA–sipW–tasA operon (tapA operon)11 and BslA 

(encoded by bslA), a hydrophobin-like protein that confers hydrophobicity to the 

community12,13. A role for extracellular DNA (eDNA)14 and mineral deposits as components 

of the extracellular matrix has also been documented15. There is a strong correlation between 

the molecules that are needed for biofilm formation on biotic and abiotic surfaces, validating 

the utility of the laboratory model systems16. 



4 
 

A substantial focus of many research groups has been to identify the regulatory 

mechanisms that underpin biofilm formation and characterize the properties of the extracellular 

matrix components of B. subtilis biofilms. Over the past 20 years it has become apparent that 

a B. subtilis biofilm formed by a single isogenic species is a remarkably heterogeneous 

community, making it ideal for the study of evolution within biofilm communities. 

Furthermore, B. subtilis exhibits emerging ecological properties that are dependent on biofilm 

formation, which affect social behaviours and interactions with hosts, resulting in a shift in the 

focus of research towards these as yet underappreciated aspects of B. subtilis physiology. 

In this Review, we describe the recent advances in our knowledge of the principles 

governing biofilm formation, including transcription regulation and composition of the matrix. 

We explore biofilm formation within the context of microbial interactions and expand on 

interactions of the B. subtilis biofilm with hosts, such as plant roots and the intestinal tract. 

Finally, we highlight the progress that has been made in determining the evolutionary processes 

that occur in biofilm populations. By illuminating the versatile nature of B. subtilis biofilms, 

we extend the utility of B. subtilis biofilm formation beyond its usefulness as a laboratory 

model to a multifaceted and functional system with real-world applications in agriculture and 

human health. 

 

[H1] The B. subtilis biofilm matrix 

Great advances have been made in the characterization of B. subtilis biofilm matrix 

components, which include the secreted proteins TasA, TapA and BslA, as well as a mineral 

scaffold, eDNA and an exopolysaccharide. B. subtilis biofilms have been compared to colloidal 

hydrogels, with the matrix corresponding to the cross-linked gel17. 

 

[H2] Products of the tapA operon 

The tapA operon encodes three proteins that are involved in B. subtilis biofilm formation: 

TapA, SipW and TasA. 

[H3] TapA. TapA is a 253-residue multidomain secreted protein containing a predicted 43-

amino-acid signal peptide. Tap A has been described as a TasA assembly and anchoring 

protein18. Secreted TapA contains three distinct structural domains with varying levels of 

intrinsic disorder19,20: an N-terminal domain (amino acids 44–75) that is necessary for pellicle 

and colony biofilm formation, a central stable domain (amino acids 75–191) that forms a β-

sandwich fold (Protein Data Bank (PDB) identifier (ID) 6HQC and 6QAY) and a C-terminal 

domain (192–253) that is highly disordered in solution. As only residues 44–57 of TapA are 
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essential for biofilm structure, the central stable domain, which is also the mostly highly 

conserved region of TapA, currently has no known function20. Co-expression of the wild-type 

tapA allele and a variant with mutations in residues 50–68 (overlapping with the essential 

region) slowed pellicle formation, although the underlying mechanism is unknown21. 

In vivo, TapA localizes to foci on the cell surface that are proposed to anchor TasA fibres 

to the cell wall and accelerate TasA fibre formation18. However, TapA is not necessary for 

TasA fibre formation and does not affect fibre architecture in vitro but does enhance 

polymerization21-23. Interestingly, TapA forms β-sheet rich aggregates in isolation and 

associates with fibril structures in vivo even when TasA is absent22. Whether these ∆tasA-fibres 

consist solely of TapA or whether TapA just has a propensity to associate with fibril structures 

remains to be clarified. Nonetheless, function of TapA in the matrix is closely tied to that of 

TasA. Consistent with this, strains lacking TapA have lower levels of matrix-localized TasA, 

and full function of TasA and TapA in the matrix requires their concomitant expression within 

the same cells18. 

[H3] SipW. SipW is a type I signal peptidase that post-translationally modifies both TasA and 

TapA by cleaving their N-terminal signal peptides at the extracellular surface24 (Figure 2). 

The cytoplasmic C-terminal domain of SipW additionally activates expression of the epsA–O 

and tapA operons in surface adherent biofilms25, adding a supplementary function to this 

protein that is essential for biofilm formation. 

[H3] TasA. Originally proposed as an antibiotic factor26, TasA has various emerging roles, 

including functions in biofilm structure, sliding motility, signalling and plant colonization. 

TasA is a 261 amino acid protein with a 27-residue signal peptide27. TasA is found as fibres 

in the biofilm matrix and is required for the structural integrity of the biofilm11,23. TasA-fibres 

have been isolated directly from biofilms and also produced from recombinant protein. The 

source of the fibres influences the level of amyloid character that is detected11,22,28,29. TasA 

fibres isolated from B. subtilis pellicles show binding of thioflavin T, Congo red and the 

amyloid-specific antibody A11, which suggests that these isolated fibres have amyloid 

properties11. Subsequent biophysical and recombinant protein approaches have revealed that 

both amyloid and non-amyloid TasA fibres exist22,28,29. 

Recombinant TasA (which lacks the signal peptide and thus corresponds to the mature 

secreted protein) forms biologically active fibres that are non-amyloidogenic and have a similar 

secondary structure to those isolated from biofilms28. Unlike curli, the amyloid fibres that are 

produced by Escherichia coli and other enteric bacteria (reviewed elsewhere23), monomeric 

TasA in B. subtilis is globular in solution and adopts a jelly-roll-like fold with a flexible helix-
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rich region29. At low pH, TasA forms dense gel-like networks that are comparable to colloidal 

aggregation30. Transmission electron microscopy (TEM) imaging of TasA fibres consistently 

reveals repeating units along the protofilament (smallest diameter fibres) axis that are estimated 

to be ~5 nm in length22,28, similar to the size of the TasA monomer. Like amyloid fibres, 

biologically active TasA fibres are resistant to proteases but, unlike β-amyloid fibres, TasA 

fibres are susceptible to the detergent sodium dodecyl sulfate, suggesting key differences in 

fibre structure. NMR analysis of TasA fibres, after addition to ∆tasA cultures, showed some 

changes in structure between the monomeric and fibre forms, including increased β-sheet 

character29. By contrast, another study found that the CD spectra of the monomer structure 

were highly similar to those recombinant fibres and fibres purified from B. subtilis biofilms28. 

These studies also showed that the N-terminal region of processed TasA is important for 

polymerization, as addition of a single amino acid to the N-terminus blocks polymerization and 

locks TasA in a monomeric form. Thus, although the structure of TasA fibres is still unknown, 

the importance of their role in B. subtilis biofilms is well established. 

TasA additionally affects and has a regulatory role in cell physiology9,31. The presence of 

TasA fibres within the biofilm matrix stimulates expression of motility genes and down-

regulates matrix expression in subpopulations of cells, and thus contributes to colony spreading 

on surfaces31. Deletion of tasA has other pleiotropic effects, including the down-regulation of 

genes related to sporulation and an increase in expression of matrix and antimicrobial 

secondary metabolite-related genes9. Moreover, TasA is associated with the detergent-resistant 

fraction of the cell membrane and influences membrane fluidity. However, most strikingly, 

tasA deletion leads to a decrease in B. subtilis viability in biofilm-inducing conditions. These 

functions have been proposed to be separate from TasAfibre forming and structural roles, as a 

strain producing a biofilm-inactive TasA variant retained wild-type physiological traits9. 

However, the level of the variant TasA produced by this strain was lower than in the wild type, 

opening the alternative prospect that the level of TasA needed varies with different processes. 

Looking beyond B. subtilis, TasA orthologues also have multiple roles. For example, in 

Bacillus cereus, the TasA orthologue CalY acts as a cell-associated adhesion factor during 

early biofilm formation prior to its release from the cell by the SipW homologue32. It is safe to 

say that despite the many studies conducted to date on TasA and its orthologues, many 

questions remain about its active structure, biological functions and roles in different strains 

and species. 

 

[H2] The biofilm surface layer protein BslA 
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BslA has two genetically separable functions, being required for both biofilm hydrophobicity 

and biofilm architecture13,33. BslA seems to act synergistically with TasA fibres and 

exopolysaccharide (EPS) to generate structural complexity in the biofilm, as production of 

these matrix components is unaltered in mutants lacking BslA but colony biofilm structure is 

compromised34. Whereas bslA is transcribed uniformly in the biofilm population, the protein 

primarily localizes to the biofilm periphery, forming a hydrophobic coating12,13. The crystal 

structure of BslA provides insight into this aspect of its function, as it reveals an immunoglobin 

G-like fold with a cap region that can exist in either a cap-in hydrophilic state or a cap-out 

hydrophobic state35 (Fig. 2d). The protein forms a 2D lattice in vitro, creating an elastic film at 

interfaces, which has been studied by biophysical techniques (Box 1)35. It is conjectured that 

at the biofilm–air interface BslA transforms from cap-in to cap-out formation and this transition 

leads to hydrophobicity of the biofilm surface. 

A C-terminal Cys-x-Cys (CxC) motif is required for BslA oligomerization in the oxygen-

rich environment of the biofilm surface, and the motif is essential for conferring hydrophobicity 

to the community, but is not required for the complex architecture of the biofilm33. The 

importance of the CxC motif for hydrophobicity was further demonstrated when YweA, a BslA 

paralogue lacking the CxC motif, was used in genetic complementation studies. Native YweA 

was unable to reinstate either hydrophobicity or structural complexity in a bslA-deficient strain, 

whereas a YweA variant containing the CxC motif fully restored hydrophobicity and partially 

restored the complex architecture33. Biofilm hydrophobicity and the corresponding presence of 

BslA (and its dimerized form) confers resistance of the resident bacteria to chemical attack33. 

To date, BslA has been studied primarily in NCIB 3610 and its relevance in the non-laboratory 

environment or other isolates is yet to be elucidated. 

 

[H2] Biofilm matrix carbohydrates 

EPS is the main biofilm carbohydrate and is synthesised by the 15 gene products of the 

epsA–O operon4, which is transcribed in propagating waves at the edge of the expanding colony 

biofilm36. In addition to its signalling function, EPS is required for complex colony structure, 

pellicle formation and water retention25,37-41. The protein tyrosine kinase EpsB and EpsA are 

predicted to regulate EPS production42. The operon also encodes a sugar dehydratase (EpsC), 

multiple putative glycosyltransferases (EpsD, EpsE, EpsF, EpsH, EpsI, and EpsJ), a putative 

pyruvyl transferase (EpsO) and a predicted polysaccharide transport protein (EpsK)43,44,45 

(Figure 2). Bioinformatic analysis predicts that EpsL is a sugar transferase that possibly 

transfers the first sugar unit onto a lipid carrier. EpsG is a predicted transmembrane protein of 
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unknown function. The function of a few of these proteins have been studied in more detail. 

EpsE is a bifunctional protein that is involved in EPS synthesis and directly inhibits motility 

by acting as a clutch on the flagella rotor44. EpsC has NAD+-dependent UDP-N-

acetylglucosamine 4,6-dehydratase activity46. EpsN can produce UDP-2,6-dideoxy 2-

acetamido 4-amino glucose from of UDP-2,6-dideoxy 2-acetamido 4-keto glucose in a 

pyridoxal 5′-phosphate-dependent manner47. EpsM can transfer acetyl groups to UDP-2,4,6-

trideoxy-2-acetamido-4-amino glucose to produce N,Nʹ-diacetylbacillosamine. Based on 

sequence homology and the in vitro activities of EpsC, EpsM, and EpsN, it has been proposed 

that these proteins may have a role in the biosynthesis of N,Nʹ-diacetylbacillosamine, a 

modified monosaccharide that is produced by some bacteria48. 

The composition of EPS and whether it contains N,Nʹ-diacetylbacillosamine is still 

unclear owing to conflicting findings from multiple studies. One analysis found that EPS 

contained glucose, N-acetylgalactosamine and galactose (with about 3:2:1 ratio)49. Further 

supporting this finding, the galactose metabolism pathway was found to be important for 

biofilm formation and regulation of this pathway was interrelated to regulation of the epsA–O 

operon49. By contrast, another study concluded that EPS is predominantly composed of 

mannose (88%) and glucose (12%)50. Furthermore, B. subtilis EPS is cross-reactive with an 

antibody raised against poly-β-1,6-N-acetyl-D-glucosamine (PNAG), a common biofilm 

exopolysaccharide45. Further investigation of the structure of EPS and monosaccharide 

components is necessary. 

 

[H2] Other matrix components 

eDNA is a common matrix component in bacterial biofilms and has been studied in 

diverse microbial systems51. The function of eDNA in B. subtilis biofilms is less explored than 

other biofilm systems but studies have found that eDNA is important for biofilm architecture 

and is required in the early stages of biofilm formation14. Treatment of B. subtilis biofilms with 

DNaseI during early biofilm development (12 h or earlier) led to an appreciable reduction in 

biofilm biomass but no difference was seen when the enzyme was added at later time points. 

Retention and localization of eDNA in the biofilm is also dependent on EPS production, a 

possible interaction that is further supported by isothermal titration calorimetry45. 

Another highly anionic polymer of the B. subtilis matrix is poly-𝛾𝛾-glutamic acid (𝛾𝛾-

PGA), a linear polymer of L-glutamate and D-glutamate linked at the 𝛾𝛾-carboxyl instead of at 

the ⍺-carboxyl that is typically used in proteins. The levels of 𝛾𝛾-PGA in the matrix are highly 
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dependent on the strain and growth conditions. Some strains, such as B. subtilis B-1, have been 

described as a 𝛾𝛾-PGA dominant matrix former, whereas the common biofilm model strain 

NCIB 3610 produces very little γ-PGA52. Synthesis of 𝛾𝛾-PGA is carried out by enzymes 

encoded by the pgsBCAE operon (previously known as ywsC–ywtABC): PgsB and PgsC are 

responsible for polymerization and PgsA and PgsE comprise the export machinery53 (Figure 

2b). The export function of PgsE has been proposed based on findings from the highly 

homologous system of Bacillus anthracis. The presence of 𝛾𝛾-PGA in the biofilm matrix is 

correlated with water retention and resistance to ethanol-induced dehydration54. 

In addition to organic molecules, the biofilm matrix also contains inorganic 

compounds, such as metal ions and minerals. For example, B. subtilis induces calcite 

precipitation from calcium ions, which is correlated with increased colony biofilm wrinkling 

and complexity and may increase resistance to environmental assault by creating diffusion 

barriers55, 15. The conversion of calcium acetate to calcite crystals is linked to the increase in 

intra-colony pH during biofilm development, a process that is dependent on the ureA–C operon. 

The structure and morphology of calcium carbonate crystals are affected by TasA, TapA and 

EPS in vitro, suggesting that these molecules interact with calcium ions in the biofilm56.  

Although the most abundant constituents of the biofilm matrix in B. subtilis have been 

identified, the interaction among them is largely unexplored. Intriguingly, substitution of 

specific conserved residues in TasA with a cysteine residue allows pellicle biofilm 

development in the absence of EPS57. However, this process is dependent on BslA57, 

suggesting that these TasA substitutions result in a novel inter-molecular interaction between 

these two components. Further investigation of matrix interactions and structures is required to 

fully understand this complex system. 

 

[H1] Regulation of biofilm formation 

Biofilm formation is an energetically expensive process that requires the transcription 

of a suite of genes to ensure timely production of the matrix molecules. Although the regulation 

of biofilm formation in B. subtilis has been extensively studied (reviewed elsewhere58,59), 

additional aspects of regulatory networks are still being discovered. Here, we briefly introduce 

the main components of these networks and review recent advances in the regulation of biofilm 

development mediated by intracellular circuitry. 

 

[H2] Intracellular regulatory pathways 
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Biofilm formation and motility are described as mutually exclusive lifestyles, with cells 

in a bacterial population expressing genes that are necessary either for motility or for biofilm 

matrix production but not for both60. Consistent with this idea, B. subtilis exhibits heterogeneity 

in gene expression within the cell population (extensively reviewed elsewhere59), and 

transcription of the genes needed for motility is inversely correlated with that of the genes 

needed for biofilm matrix production. The transcription factor Spo0A is a critical regulator of 

B. subtilis biofilm formation4,5, with this regulatory pathway serving as an integration ‘hub’ for 

many competing and overlapping signals to control the proportion of cells in the biofilm that 

transcribe genes linked to biofilm matrix production. Initiation of biofilm formation is 

promoted when moderate levels of phosphorylated Spo0A (Spo0A~P) are reached within a 

cell. 

The sensor histidine kinases KinA, KinB, KinC and KinD are indirectly responsible for 

the phosphorylation of Spo0A via a phosphorelay, in which the phosphoryl groups are 

sequentially transferred from the kinases to the relay proteins Spo0F and Spo0B and finally to 

Spo0A61,62. The phosphorelay is affected by numerous Rap phosphatases and their 

corresponding Phr pentapeptides that together act as quorum-sensing systems63. These Rap–

Phr systems affect biofilm development and evolution64, especially the plasmid-encoded RapP 

in strain NCIB 361065. At threshold levels, Spo0A~P directly represses transcription of abrB, 

a transition state transcription repressor of several operons involved in biofilm formation, and 

concomitantly promotes the expression of abbA, which encodes an anti-repressor of AbrB66. 

A second Spo0A~P-dependent anti-repressor pathway involves the transcription 

repressor SinR, a homotetramer that directly inhibits transcription of the matrix-encoding 

epsA–O and tapA operons60. Threshold levels of phospho-Spo0A trigger production of the SinR 

anti-repressor protein SinI and thereby stimulate transcription of the matrix-encoding operons. 

The first structures of full-length tetrameric SinR and dimeric SinI in solution shed light on 

how SinR binds to DNA and how SinI inhibits this function67. The formation of a flexible SinR 

homotetramer facilitates bending of the target DNA to enable repression of biofilm genes. SinI 

inhibits SinR from effectively binding DNA by forming SinR–SinI dimers that disrupt the 

formation of SinR homotetramers. SlrR is another antagonist of SinR which is induced by 

threshold levels of phosphor-Spo0A68 and promotes transcription of the epsA–O and tapA 

operons, thus enabling the switch from a motile state to biofilm formation69. As levels of 

phospho-Spo0A∼P are not elevated homogeneously in the population, the regulatory network 
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heterogeneously induces expression of matrix genes, creating subpopulations of matrix 

producer (ON-state) and non-producer (OFF-state) cells70-72. 

Other transcription regulation systems also influence expression of biofilm-related 

genes by altering Spo0A~P levels. For example, the phosphodiesterase YmdB influences the 

switch between biofilm and motility gene expression. YmdB deficiency has wide ranging 

effects on gene expression, resulting in reduced expression of biofilm genes and enhanced 

expression of motility genes, including hag (encoding flagellin) and autolysin genes73,74. By 

allowing the expression of SinR-repressed genes in a subpopulation of cells, YmdB acts as a 

regulatory protein that affects phenotypic heterogeneity in matrix gene expression75. 

Another regulatory factor is the transcription termination factor Rho, an ATP-

dependent RNA helicase/translocase that represses genome-wide transcription76,77. Rho both 

directly and indirectly regulates motility, biofilm formation and sporulation78. In Rho-deficient 

cells, epsA–O and tapA operons are transcribed at low levels owing to an increase in SinR-

mediated repression of their promoters triggered by enhanced Spo0A phosphorylation. 

The Spo0A mediated regulatory pathway is also modulated by the secondary messenger 

cyclic di-adenylate monophosphate (c-di-AMP). In addition to controlling growth, response to 

DNA damage and sporulation79, 80, c-di-AMP also reduces expression of the tapA and epsA-O 

operons, leading to impaired biofilm formation81. While disruption of sinR restores biofilm 

formation under increased intracellular c-di-AMP concentrations, c-di-AMP accumulation 

does not affect the intracellular levels of SinR, suggesting that the nucleotide affects the activity 

of SinR. However, another study found that increased intracellular levels of c-di-AMP led to 

increased expression of the tapA operon. Furthermore, B. subtilis encodes two putative c-di-

AMP transporters that are involved in c-di-AMP secretion and facilitate root colonization. 

Thus, B. subtilis can sense and respond to extracellular c-di-AMP, uncovering a potential role 

of this second messenger in inter-bacterial communication82. Given the differences in 

experimental results, it is possible that the effect of intracellular c-di-AMP levels or the ability 

to secrete c-di-AMP changes in response to environmental conditions. c-di-AMP is not the 

only secondary messenger molecule that affects cell differentiation in B. subtilis. Cyclic di-

GMP (c-di-GMP) signalling directly inhibits motility in B. subtilis through the interaction of 

the putative c-di-GMP receptor YpfA with the flagellar motor protein MotA83. However, the 

effect of c-di-GMP levels on biofilm formation is disputed83,84. 

 

[H2] The Y-complex 
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The Y-complex comprises three proteins, RicA, RicF and RicT (also known as YmcA, 

YlbF and YaaT, respectively), which contribute to B. subtilis biofilm formation. Inactivation 

of these proteins results in impaired biofilm-forming ability38,60, although the mechanism 

underpinning this phenotype remains unclear. A study reported that the Y-complex regulates 

biofilm formation by accelerating the phosphorylation of Spo0A85, whereas another found that 

SinR mRNA and protein levels are increased in Y-complex mutants and demonstrated that the 

Y-complex interacts with and controls the activity of RNaseY, which destabilizes sinR 

mRNA86. However, more recent findings dispute the mRNA destabilization model and suggest 

that in addition to accelerating Spo0A phosphorylation, the Y-complex induces biofilm 

formation through an unknown Spo0A-independent pathway 87,88. 

 

[H2] Sensing stress 

Stress conditions influence biofilm formation in diverse bacteria89. In B. subtilis, the 

alternative sigma factor sigma B (σB) is activated by stressors, including heat, salt and 

starvation conditions90. Activity of σB manifests as a series of stochastic pulses within cells in 

the biofilm, showing maximal expression at the upper surfaces of the community91. Stochastic 

pulsing of σB appears to provide an adaptation mechanism for cells to either activate σB or 

sporulate, thus allowing cells in these different states to coexist in the same zone of the biofilm 

structure. Heterogeneous expression of biofilm components is linked with changes in biofilm 

structure and robustness over both space and time71. For example, during pellicle formation a 

substantial increase in biomass robustness is correlated with an increase in epsA–O expression, 

and with tasA expression being almost universally activated in the cells of the biofilm 

population71. These data also reveal heterogeneity between the transcription profiles from the 

tapA and epsA–O promoters. The genetically homogeneous population in the pellicle 

undergoes a phenotypic segregation into three phenotypically distinct subgroups producing 

different levels of EPS and TasA: matrix non-producers, EPS producers, and generalist cells 

that produce both major components. This differentiation of the population can be viewed as a 

‘phenotypic division of labour’ where specialization leads to maximum population 

efficiency92. 

The repertoire of regulatory network components influencing biofilm development in 

B. subtilis is extensive. However, we still do not fully understand whether these pathways are 

active under all conditions or only become active in specific environmental conditions. 

Heterogeneous activation of transcriptional regulators further increases the phenotypic 

diversity of B. subtilis cells within the biofilms and enhances survival. 
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[H1] Impact of microbial interactions  

The drive to understand microbial interactions and re-create simplified, ecologically 

relevant habitats has led to research on mixed biofilms. In the rhizosphere, B. subtilis 

cohabitates with many soil-dwelling bacteria and fungi, and interactions between these 

organisms and B. subtilis can modulate biofilm structure and robustness (comprehensively 

reviewed elsewhere93). 

 

[H2] Biofilm modulation by other species 

Numerous bacterial species modulate B. subtilis biofilm formation and structure94-96. 

The expression of B. subtilis biofilm genes is induced during co-culture with other members of 

the Bacillus genus97. B. cereus produces and secretes thiazolyl peptide antibiotics termed 

thiocillins, which trigger matrix production in B. subtilis98. Interestingly, abolishing the 

antibiotic activity of thiocillin did not affect its ability to induce biofilm gene expression, 

suggesting that secondary metabolites can have an alternative function in addition to antibiosis. 

By contrast, Pseudomonas putida and Pseudomonas protegens hinder biofilm-specific gene 

expression when co-cultured with B. subtilis, a behaviour that is mediated by secretion of the 

antimicrobial 2,4-diacetylphloroglucinol (DAPG) that delays tapA gene expression at 

subinhibitory concentrations99. DAPG alters B. subtilis biofilm growth and phenotypic 

differentiation adjacent to P. protegens. While various environmental signals are sensed by 

histidine kinases in B. subtilis that affect Spo0A~P levels, development of B. subtilis biofilms 

can also be affected in a Spo0A-independent manner95. The soil bacterium LysiniBacillus 

fusiformis induces wrinkle formation in B. subtilis colonies through a diffusible primary 

metabolite, hypoxanthine 95. The induction of biofilm wrinkle formation was hypothesized to 

be mediated by localized B. subtilis cell death caused by increased intracellular hypoxanthine 

levels, as deletion of hypoxanthine transporters in B. subtilis abolished induction of wrinkles 

by L. fusiformis95. 

Mixed cross-kingdom biofilms are also observed. For example, B. subtilis colonization 

of the hyphae of both the filamentous black mould fungus Aspergillus niger and hyphae of the 

basidiomycete mushroom Agaricus bisporus depends on TasA and EPS7. B. subtilis also forms 

biofilms on the ectomycorrhizal fungus Laccaria bicolor, where eDNA has been suggested to 

contribute to this interaction100. The relationship can also be bidirectional; the plant pathogen 

Fusarium culmorum induces biofilm formation in B. subtilis through decreased expression of 

sinR and therefore enhanced tasA transcription101. In addition, the presence of fungal plant 
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pathogens can also induce the expression of fungitoxic secondary metabolites by B. subtilis to 

increase its competitive edge102,103. 

 

[H2] Synergism in multispecies biofilms 

Dual-species biofilms can gain unique characteristics as compared to their respective 

monoculture colonies96. The soil dwelling and rhizospheric bacterium, Pantoea agglomerans 

has increased antibiotic resistance when it cohabitates with B. subtilis94, which requires B. 

subtilis TasA and a P. agglomerans exopolysaccharide. Similarly, B. subtilis adherence to a 

Streptococcus mutans biofilm also depends on TasA96. Interestingly, production of B. subtilis 

biofilm components is induced by S. mutans, suggestive of a feedback loop. In addition to 

synergistic mixed-species communities, the B. subtilis matrix has a protective role in 

encounters with other microbes. On the leaf surface, Pseudomonas chlororaphis invades the 

B. subtilis population when the biofilm matrix is absent, while the type VI secretion system of 

P. chlororaphis additionally stimulates sporulation of B. subtilis104. In the presence of the 

biofilm matrix, B. subtilis co-exists with P. chlororaphis, forming a community that 

collectively promotes plant growth and protects from pathogens. The B. subtilis matrix is also 

needed to create a spore-filled biofilm megastructure upon interaction with Myxococcus 

xanthus105. The emergent properties of the B. subtilis biofilm can also affect B. subtilis and 

other microbes in the surrounding environment. Potassium ion channel-mediated electrical 

signals generated by a B. subtilis biofilm alter the membrane potential of distant cells and 

modulate their motility106. This communication mechanism extends beyond the cells within the 

B. subtilis population; for example, Pseudomonas aeruginosa cells are attracted to the electrical 

signal released by the B. subtilis biofilm107. 

 

[H2] Interspecific competition 

Engagement with a microbial neighbour can also be less amicable, as B. subtilis 

expresses toxins and other effectors to dominate a niche. The build-up of the extracellular iron-

chelating molecule pulcherriminic acid in the region surrounding colony biofilms initiates 

growth arrest of the producing community while concomitantly preventing invasion by 

neighbouring microorganisms108,109. Other bioactive compounds, including surfactins, the 

cannibalism toxin SDP (cannibalism in this context refers to inducing lysis of conspecific cells 

and cells of other species to release nutrients for biofilm growth), sporulation killing factor and 

various other secondary metabolites, are of interest owing to their potential agricultural use as 

biocontrol agents. For example, B. subtilis biofilms outcompete Serratia plymuthica both in 
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vitro and on plant roots by producing bacillaene, a non-ribosomally synthesized antibiotic110. 

B. subtilis biofilms on plant roots also form a zone of exclusion that prevents E. coli 

colonization, by an unidentified mechanism111. Competition is also present between Bacillus 

spp., as B. subtilis biofilms expand and subsume neighbouring Bacillus simplex colonies, by 

secreting SDP and the lipopeptide toxin surfactin, which induce B. simplex cell death112. Of 

note, B. subtilis produces a biofilm-specific antibacterial toxin, YIT, which contributes to its 

competitiveness against sensitive strains or species113. YIT is produced during biofilm 

formation from an operon paralogous to that of SDP but unlike SDP can permeate the biofilm 

matrix. Depending on their concentration, many of these compounds can also affect ‘kin’ (or 

conspecific) strains, leading to nuance in interspecific and intraspecific microbial 

interactions114-116. Imaging mass spectrometry provides a powerful novel approach to study 

how specific metabolites and peptides are spatially distributed in the above-mentioned 

interactions and will contribute to understanding of how interspecific and intraspecific 

interactions modulate B. subtilis biofilm development. 

 

[H1] Biofilm formation on plant roots 

B. subtilis is a well-known biocontrol agent that is widely used in agriculture117. 

However, the underlying mechanism of these plant–microbe interactions and how they 

contribute to preventing pathogenic microorganism colonization has only recently been 

explored118. Advances in model systems and experimental designs have allowed visualization 

of B. subtilis biofilm dynamics in the rhizosphere over longer time scales. Although these 

studies primarily examined Arabidopsis thaliana, other plant species are beginning to be 

used8,111 ( BOX 2). A large diversity of B. subtilis strains have been isolated from the 

rhizosphere119,120 16. For example, 50 unique isolates were collected from the rhizosphere of 

cocoa trees (Theobroma cacao), of which 90% were able to form robust biofilms119. Similarly, 

another study found variation in the ability of rhizosphere B. subtilis isolates to form biofilms 

in vitro and on tomato plant roots16. The variation among B. subtilis strains is not only observed 

in their ability to form biofilms but also in additional plant growth-promoting and biocontrol 

traits, such as mineral solubilization, indole acetic acid production, siderophore secretion and 

surfactin production16 120. 

 

[H2] Colonization of plant roots 

Before biofilms can form, motile cells need to find and adhere to the root surfaces. 

Indeed, both motility and chemotaxis are required for B. subtilis colonization of A. thaliana 
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roots121Of the 10 known chemoreceptors encoded in the B. subtilis genome, McpB, McpC and 

TlpC mediate attraction to A. thaliana root exudates121 (Figure 3). Interestingly, colonization 

of growing roots is not solely dependent on these chemoreceptors, suggesting that redundancies 

are present in the chemotaxis and other sensing systems that respond to root-derived signals121. 

B. subtilis preferentially colonizes the root differentiation and elongation zone, as shown for A. 

thaliana and cotton plants111, 122. Microfluidic imaging techniques showed that accumulation 

of B. subtilis at the elongation zone began within 20 min of inoculation111. Intercellular 

signalling between B. subtilis cells (that is, secretion of c-di-AMP) is important for successful 

attachment to the root, as the c-di-AMP permeases YcnB and YhcA are necessary for efficient 

colonization of A. thaliana roots82. 

B. subtilis matrix components are required for colonization and biofilm formation on 

plant roots16,123,124. Deletion of the epsA–O operon or tasA coding region result in defective 

biofilm formation on tomato seedling roots16,124. Interestingly matrix-deficient B. subtilis 

mutants only establish dense biofilms on A. thaliana roots when co-inoculated with wild-type 

cells, suggesting that matrix components are shared92,123. Overproduction of γ-PGA also 

contributes to root colonization and persistence of some B. subtilis strains, although it is not 

essential125,126, 52. The role of surfactins in B. subtilis biofilm formation on root surfaces is 

unclear120,127, 128. Although surfactin production alters the structure of colony and pellicle 

biofilms in vitro, the most recent data suggest that surfactin does not affect biofilm formation 

on plant roots120, 128. 

 

[H2] Ecological interactions 

Our molecular understanding of plant signalling and interactions with B. subtilis 

continues to advance. Plant polysaccharides, including xylan, pectin, and arabinogalactan, have 

been found to have a crucial role in stimulating B. subtilis biofilm formation123,129. These 

molecules perform this function in two distinct ways; first, they induce biofilm matrix gene 

expression by stimulating the activity of histidine kinases that phosphorylate the master 

regulator Spo0A and, second, they are processed and incorporated into the biofilm matrix123. 

Digestion and utilization of galactose might occur through the galactan utilization pathway, as 

B. subtilis binding to plant roots or β-1,4-galactobiose leads to derepression of the galactan 

utilization (gan) operon129. 

Root-associated biofilms also represent an environment for kin discrimination 

(differential interaction with organisms based on relatedness) among B. subtilis strains or 

isolates. The ability of B. subtilis strains to create mixed-isolate biofilms on plant roots directly 
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correlates with the phylogenetic distance of the strains, suggesting that there is antagonism 

between non-kin strains during rhizoplane colonization of the rhizoplane (the region of the 

rhizosphere in which the root is in contact with the soil)114. Microbes that are potentially 

valuable to plants must compete with other organisms in the ecosystem to occupy this space. 

Tomato plant exudates induce bacillaene production by B. subtilis during colonization, which 

leads to increased killing efficacy of the rhizoplane competitor S. plymuthica110. In addition, 

superior B. subtilis colonization compared with S. plymuthica also mediated increased plant 

systemic resistance against the plant pathogen Pseudomonas syringae 110. This interplay 

suggests that a complex symbiosis exists between B. subtilis and the plant host, which is driven 

by evolutionary adaptation. 

 

[H1] Biofilms in the intestinal tract 

Commensal bacteria are pivotal to human health, as they prompt the host's immune 

system to induce protective responses that prevent colonization and invasion by pathogenic 

species. Interest is growing in the identification of the genes and mechanisms that are utilized 

by beneficial microbes to limit disease caused by invading pathogens. Although B. subtilis 

strains are mainly found in the soil, they have also been isolated from human skin and the 

gastrointestinal tract, showing that the bacterium has adapted its physiology to survive under 

diverse conditions130,131. B. subtilis is one of the predominant microorganisms used in probiotic 

products, despite the underlying mechanisms by which the bacterium can restore and maintain 

a healthy gut flora being largely unknown. Studies have begun to link the protective effect of 

B. subtilis to its biofilm production (Figure 4). 

In a mouse model, wild-type B. subtilis confers protection from Citrobacter rodentium, 

an enteric pathogen that causes acute colitis, unlike an EPS-deficient B. subtilis strain132. 

Protection by B. subtilis EPS is a result of host immune modulation rather than prevention of 

pathogen colonization or disruption of the epithelium. EPS prevents colitis in a TLR4-

dependent manner that requires myeloid cells50. EPS induces the formation of anti-

inflammatory M2 macrophages that produce TGFβ and PDL1 to broadly inhibit the activation 

of T cell responses133. Furthermore, B. subtilis EPS also protects against Staphylococcus aureus 

systemic infection. Macrophages from EPS-treated mice exhibited an M2 phenotype and also 

restricted growth of internalized S. aureus through the production of reactive oxygen species134. 

Altogether, these data suggest that B. subtilis EPS can induce the differentiation of immune 
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cells that have antibacterial and anti-inflammatory properties, which ultimately contribute to 

increased host survival. 

Caenorhabditis elegans is a nematode that is widely used to study bacterial 

pathogenicity and host immunity. B. subtilis was first found to be beneficial to C. elegans, as 

substituting E. coli OP50 for B. subtilis as a food source extended the longevity of the C. 

elegans daf-2 and age-1 long-lived mutants135. Biofilm formation by B. subtilis was later 

identified as one of the factors that prolong C. elegans longevity. Two molecules produced by 

B. subtilis that extend C. elegans lifespan are the quorum-sensing molecule CSF and nitric 

oxide. Synthesis of both molecules is enhanced in B. subtilis biofilm-forming conditions, 

compared with planktonic growth136. B. subtilis biofilm formation in C. elegans also confers 

resistance against different types of stress, such as heat and oxidative stress137. The protective 

role of the B. subtilis biofilm was additionally demonstrated against the causative agents of two 

detrimental neurodegenerative diseases, α-synuclein in Parkinson disease and amyloid-β in 

Alzheimer disease. A probiotic B. subtilis strain inhibits aggregation of α-synuclein and cleared 

α-synuclein aggregates in a C. elegans synucleinopathy model. Biofilm-deficient strains 

exhibited higher rates of α-synuclein aggregation than in a wild-type biofilm-proficient 

strain138. Similarly, B. subtilis biofilm formation in the gut contributes to the role of B. subtilis 

in protecting against amyloid-β-related toxicity in a C. elegans Alzheimer disease model139. 

Research is currently ongoing to further investigate the potential of B. subtilis to treat or prevent 

neurodegenerative diseases. Future developments in the field, such as imaging technologies, 

chemical profiling, and using genetically modified host systems will create opportunities to 

identify the underlying mechanisms involved in host–microbe interaction during B. subtilis 

biofilm formation. 

 

[H1] Experimental evolution in the biofilm 

An emerging topic in biofilm research is mapping the principles that govern evolution 

in biofilm populations. Studies have uncovered novel insights into genetic and phenotypic 

diversity and interactions between matrix elements that would otherwise have remained 

undetected. Intriguingly, repeated cultivation of B. subtilis in shaking planktonic conditions 

results in rapid genetic differentiation, discernible as derivative isolates with distinct colony 

morphotypes140. The variability in colony biofilm structures was connected to mutation of sinR 

and the resultant alteration in expression of biofilm-related genes. Similarly, pellicle biofilms 

formed by B. subtilis can be exploited for studying experimental evolution of B. subtilis 
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biofilms (Figure 5), primarily because of the degree of heterogeneity observed within the 

otherwise robust biofilm population. B. subtilis can diversify into distinct colony variants that 

exhibit differences in their biofilm formation abilities and expression of biofilm-related 

genes141. The evolved colony morphotypes also display differences in surface complexity and 

hydrophobicity. Interestingly, the co-cultivation of derived morphotypes increases the 

population yield (that is, the abundance of cells) compared with the ancestral strain NCIB 

3610141. The increased biofilm dimensions with a mixed population are driven by the 

shareability of the secreted matrix components71,92. Indeed, a mixture of tasA and epsA–O 

mutant derivative strains rescue pellicle biofilm development by ‘public goods’ sharing92. 

Intriguingly, a mixture of two genetic derivative strains, one lacking EPS and the other TasA, 

enhances pellicle productivity (the number of cells residing in the biofilm) and plant root 

colonization compared with that of a strain that produces both components, revealing a ‘genetic 

division of labour’92. Similarly, both EPS-containing supernatant and purified TasA protein 

fibres rescue biofilm formation by the respective mutants11,18,22,23,92. However, the degree of 

sharing of the two matrix components differs and TasA cannot be shared as widely in the 

population as EPS71. Such an imbalance creates a collapse of genetic division of labour when 

the mixture of eps and tasA mutants is evolved for a few hundred generations57. Eventually, 

tasA and eps mutants lacking one of the matrix components enhances the air–medium interface 

colonization ability, either by enhancing production of EPS or by altering TasA protein 

properties, respectively. In the EPS-deficient strain, introduction of cysteine residues at specific 

residues in TasA generates thicker fibres than those produced by the wild-type ancestor57. 

However, in the presence of EPS, strains with cysteine-substituted TasA are at a disadvantage, 

as hydrophobicity is hampered, possibly due to disulphide bond formation between the newly 

substituted cysteine in TasA and the cysteine residues of BslA33,141. Importantly, experimental 

evolution studies using strains that lack robust biofilm formation ability have helped to uncover 

novel features of TasA. 

The rapid evolution of mutants with altered biofilm formation kinetics also highlights 

adaptation pathways in B. subtilis. A strain deficient in the phosphodiesterase YmdB does not 

form biofilms, although the ability to form pellicles in biofilm-inducing medium is rapidly 

recovered due to acquisition of mutations in sinR. Similarly, mutants lacking functional 

propelling flagella in B. subtilis rapidly attain mutations in sinR and increased expression of 

biofilm genes, an adaptation that increases competitiveness compared with its ancestor142,143. 

Of note, the range of mutations in sinR overlap in ymdB and motility-deficient hag background, 

highlighting a general evolutionary adaption in strains lacking biofilm-gene expression. 
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Experimental evolution can also be exploited to investigate how matrix-deficient 

derivative strains affect biofilm-proficient wild-type strains. Strains deficient in both EPS and 

TasA are unable to exploit the matrix nor do they incorporate into the pellicles formed by the 

wild-type strain144. However, after de novo evolved competition mediated by recombination of 

cryptic phi3T phage with the SPβ prophage region of B. subtilis, the double-mutant strain 

partially increases in the biofilms144,145. However, it remains unclear why the matrix-deficient 

double-mutant strain benefits more from this competition than the wild-type strain. By contrast, 

epsA–O or tasA single-mutant strains can readily exploit the matrix and benefit from this 

‘public good’, as the cells disengage from the metabolic burden of producing the respective 

matrix component and therefore act as ‘cheaters’146. 

The spatial structure of biofilms is a parameter that can affect bacterial adaptation. The 

ability of B. subtilis to form biofilms has been exploited to study metabolic adaptation in 

comparison with planktonic growth or other differentiation processes, such as sporulation 147. 

It will be interesting to uncover distinct bacterial evolutionary and adaptation processes during 

biofilm development. Ongoing research is currently being performed to expand our 

understanding of the evolution of B. subtilis biofilms directly on the plant root, connecting 

experimental evolution with plant host-associated biofilms. 

 

[H1] Applications of biofilms 

B. subtilis is recognized as a superb model system to study the matrix components, gene 

regulation and social interactions during biofilm development. Systematic understanding of 

how B. subtilis biofilms can be harnessed for use in probiotics has only recently been explored. 

Intriguingly, humans have a long history of exploiting microorganisms and the use of Bacillus 

spp. can be traced back to the production of traditional fermented foods, including the Japanese 

soybean breakfast food natto and the Chinese delicacy pidan (Century egg). Today, a diverse 

range of processes exploit Bacillus spp. across many sectors of the economy, and more recently 

several of the innovations are both informed and inspired by knowledge of the processes and 

materials that underpin biofilm formation. The secreted matrix molecules have unique features 

that lend themselves to novel biotechnological or biomedical purposes. BslA undergoes a 

limited structural metamorphosis at an interface such that a surface-active region becomes 

exposed35, which enables BslA to stabilize a variety of multiphase formulations148. Surface-

active proteins have widespread uses in both nature and bioengineering, thus recombinant BslA 

has been proposed as a tool for stabilization of ice cream to slow down the melting process149. 
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Novel industrial uses that require the direct use of B. subtilis biofilms have also emerged over 

the last decade, including the proposed use of B. subtilis biofilms for calcite precipitation150. 

Looking beyond the use of B. subtilis as a probiotic or biological control agent, B. subtilis 

biofilms can be repurposed as a protective coating for other probiotic bacteria in the gut151. 

Building on the viscoelastic properties of the whole biofilm, B. subtilis biofilms have been 

postulated as ‘living materials’ that can be used for a variety of purposes152. 

 

[H1] Conclusions and future perspectives 

The future of B. subtilis research will undoubtedly be driven by next-generation 

experimental approaches, ecological relevance and applications triggered by a basic 

understanding of the molecular components of biofilm formation. Recent developments in 

single-cell transcriptome analysis should help to reveal heterogeneity in global gene expression 

profiles within both single- and mixed-species biofilms, while progress in imaging mass 

spectrometry at high spatial resolution will allow understanding of the chemical language that 

influences biofilm gene expression heterogeneity within microbial communities. Furthermore, 

increased resolution and sensitivity of imaging approaches applied to analyse biofilms of B. 

subtilis and co-inhabiting microbes directly within the host at continuous time scales can be 

applied to investigations of diverse environments ranging from the plant rhizosphere to the 

animal digestive system. While we have learnt a lot from dissecting B. subtilis biofilm 

formation in the laboratory, the discovery of B. subtilis biofilms in situ in nature still requires 

further technological and conceptual approaches. The first imaging of a naturally formed B. 

subtilis biofilm in situ in the soil is still awaited.  
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Display items 

Figure legends 
Figure 1. Formation of Bacillus. subtilis biofilms in vitro. a | Schematic of the three modes of biofilm growth 
in B. subtilis, colony, pellicle and submerged, surface-attached biofilms. b | A 48-hour-old colony biofilm 
formed by NCIB 3610 (90% founding cells) and an isogenic variant that constitutively expresses green 
fluorescent protein (GFP; 10% founding cells) after growth at 30o C on an MSgg agar plate. Heterogeneity and 
patches of clonal derivatives are evident when the biofilm is examined for GFP fluorescence. c | Confocal 
microscopy image of the central rugose region of an NCIB 3610 colony biofilm grown for 48 hours on MSgg 
agar at 30o C. d | Scanning electron microscopy image of individual cells of B. subtilis 168 in a biofilm. e | 
NCIB 3610 pellicle biofilm at the air–liquid interface. A water droplet placed on top of the pellicle in the central 
region (arrow) reveals the hydrophobicity of the biofilm. f | Confocal microscopy image of a submerged biofilm 
formed by B. subtilis isolate JH642 that is constitutively expressing GFP. Image in part b courtesy of Michael 
Porter, University of Dundee. Image in part c reprinted with permission from ref.162, Wiley. Image in part d 
courtesy of Anna Dragoš and Paul J. Kempen, Technical University of Denmark. Image in part f courtesy of 
Eisha Mhatre, University of Pittsburgh. 
 
Figure 2. Bacillus subtilis biofilm matrix components and biosynthetic systems. a | The biofilm matrix 
composition is complex and can contain self-produced molecules, including BslA, TasA fibres, extracellular 
DNA (eDNA), poly-γ-glutamic acid (𝛾𝛾-PGA) and exopolysaccharide (EPS). b | A cartoon schematic of the 𝛾𝛾-
PGA (red), EPS (yellow), and TapA (blue/purple) systems showing predicted cell membrane-embedded and 
cytosolic protein components based on bioinformatics and experimental evidence. The predicted glycosyl 
transferases (GT) of the EPS system have been labelled based on their GT family membership. SipW (dark 
blue) post-translationally cleaves TapA (light blue) and TasA (purple) at the cell surface with the arrows 
representing the location of cleavage. c | Transmission electron microscopy image of a recombinant BslA film 
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with the inset showing the Fast Fourier Transform supporting high order of the lattice. d | Cartoon representation 
of two monomers from the BslA crystal structure (Protein Data Bank (PDB) identifier (ID): 4BHU)12, showing 
the ‘cap in’ and the ‘cap out’ conformation35. e | Recombinant TasA forms fibres in vitro that can be visualized 
by transmission electron microscopy. f | Cartoon representation of the crystal structure of TasA (PDB ID: 5OF1) 
with β-strands in purple and ⍺-helices in yellow. Part c adapted with permission from ref.35, National Academy 
of Sciences. 
 
Figure 3. Formation of Bacillus subtilis biofilms in the rhizosphere. a | Schematic showing the rhizosphere 
(orange; the area around the growing plant root) with B. subtilis biofilms (teal) growing in the elongation zone. 
These biofilms influence plant growth and behaviour (green arrow) and directly protect against microbial plant 
pathogens through the section of active compounds. b | Magnified view of plane root cells, showing the three 
steps of B. subtilis colonization, namely attraction (step 1), attachment (step 2) and biofilm formation (step 3). 
Signals such as plant exudates and bacterially produced cyclic di-adenylate monophosphate (c-di-AMP) are 
important for attraction and attachment. c | Magnified view of bacterial cells, showing the molecular details of 
each step of plant root colonization. The chemoreceptors McpB, McpC, TlpC and others (pink) sense plant 
signals during attraction (step 1). The c-di-AMP permeases YcnB and YhcA (orange) are involved in 
intercellular signalling during attachment (step 2). The kinases KinC and KinD (green) sense plant 
polysaccharides and plant produced L-malic acid, which leads to matrix production. Binding of plant cell wall 
polysaccharides (green hexagon) to an unknown receptor also leads to upregulation of galactan (gan operon), 
which can lead to EPS production. Biofilm formation (step 3) occurs with the digestion of galactan and the 
production of matrix components. 
 
Figure 4. Effects of Bacillus subtilis biofilms in the intestinal tract. a | Treatment of mice with the enteric 
pathogen Citrobacter rodentium (green) causes acute colitis (part aA). Pre-treatment of mice with B. subtilis 
NCIB 3610 spores (red) prior to inoculation with C. rodentium protects against acute colitis (part aB). Pre-
treatment of mice with B. subtilis NCIB 3610 purified EPS (oval dots) and subsequently with C. rodentium also 
protects against acute colitis (part aC). Model of EPS modulation of immune responses. B. subtilis and purified 
EPS induce differentiation of M2 macrophages, which inhibit CD4+ and CD8+ T cells through the production of 
TGFβ and PDL1 (part aD). b | Inhibition of α-synuclein aggregation (green triangles) by B. subtilis biofilms in a 
Caenorhabditis elegans synucleinopathy model. Using E. coli strain OP50 (blue) as a food source leads to 
accumulation of α-synuclein aggregates (part bA), whereas using B. subtilis NCIB 3610 (red) as a food source 
results in reduced formation of α-synuclein aggregates (part bB). Using B. subtilis NCIB 3610 ∆tasA (yellow) as 
a food source removes the protective effect of B. subtilis biofilm formation on α-synuclein aggregation (part bC). 
 
Figure 5. Evolution of social interactions in Bacillus subtilis biofilms. a | Experimental evolution of B. subtilis 
biofilms revealed genetic differentiation discernible by the appearance of versatile colony morphotypes with 
altered genetic background. b | Genetic division of labour leads to increased biofilm productivity compared with 
transcriptional division of labour. c | The presence of cheaters alters the intrinsic phenotypic heterogeneity during 
experimental evolution. d | An increase in cheater frequency ultimately leads to the tragedy of the commons 
(depletion of a shared resource through unhampered use driven by self-interest). 
 
Boxes 

BOX 1. Biophysical techniques in Bacillus subtilis biofilm research 

From a biophysics perspective, biofilms are a form of soft matter — a material that can easily 

be deformed by external forces and behaves differently to solid and liquids. Biophysical 

techniques have been used to probe biofilm properties at both the whole biofilm and 

macromolecular level, yielding novel insights into their form and properties (comprehensively 

reviewed elsewhere153). 

[b1] Sessile drop methods 

These methods are used for direct measurement of the contact angle between a liquid and a 

surface and revealed that the upper surface of the Bacillus subtilis colony biofilm is non-
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wetting39, a finding that led to molecular analyses of the mechanisms underpinning this 

remarkable feature12,13,33,35,141,154,155. 

[b1] Pendant drop analysis 

This type of analysis allows the measurement of surface and interfacial tension and was used 

to show that BslA is a surface-active protein that forms a stable film at an interface12. 

[b1] Rheology 

Rheology is the study of how soft matter deforms and flows. Rheological analysis in the 

presence and absence of specific matrix elements has revealed that biofilms are viscoelastic 

structures with properties that change over time156 or in evolved strains57 and dual-species 

biofilms94 and that the BslA surface layer adds stiffness to the biomass54. 

[b1] Profilometric imaging 

This technique has been used to analyse surface topology at the macro- and meso-scale, 

revealing how the biofilm surface complexity affects wetting behaviour154 and susceptibility to 

chemical and mechanical stresses155, the effect of metal ions on biofilm surface wetting157, and 

the disassembly of experimentally evolved colony morphotypes. 

[b1] Langmuir trough 

This apparatus allows the effect of a compressive force on molecules (across a range of scales) 

on the surface of a subphase to be determined. Studies with the Langmuir trough revealed that 

the elastic properties of the whole pellicle biofilm are conferred by the extracellular matrix and 

that the wrinkled morphology is derived from compression by growth in a confined space158, 
159. On a smaller scale, the properties of the stable film of BslA assembled at the air–liquid 

interface have been probed160. 

[b1] Atomic force microscopy 

A form of scanning probe microscopy that has been used to examine B. subtilis biofilms on 

clay particles161 and to investigate the interaction between extracellular DNA and 

exopolysaccharide to probe the space between cells and uncover detail of the microstructure of 

the biofilm surface14. 
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BOX 2. Imaging techniques to study plant colonization 

Plant–microbe interactions are complex and challenging to investigate at high resolution in real 

time. Root colonization and biofilm formation in the rhizosphere have been studied primarily 

using endpoint assays in which seedlings or plants are exhumed from the growth media or soil. 

Advances in microfluidic setups have enabled the visualization of biofilm formation on the 

roots of thale cress (Arabidopsis thaliana), cotton plants and aspen trees. These studies 

customized microfluidic chip-based plant cultivation experiments (see the figure) to investigate 

root–microbe interactions (RMIs) over time. RMI chip systems have been designed to contain 

an array of isolated growth chambers with individual media inlets and outlets, allowing for a 

comparison of conditions and replicates in the same microfluidic device8,111. Colonization and 

biofilm dynamics at single-cell resolution can be investigated with RMI chip systems using 

confocal microscopy, such as investigating Bacillus subtilis preference between different A. 

thaliana genotypes and the interplay between B. subtilis biofilms and Escherichia coli at the 

root surface111. These experiments are somewhat limited by the small chamber size required 

for microfluidics, as fast-growing plants such as A. thaliana out-grow the chamber in about 10 

days, whereas slower-growing plants such as tree seedlings could be visualized for much 

longer8. 

 

ToC blurb 

In this Review, Stanley-Wall and colleagues provide an overview of biofilm composition and 

formation in Bacillus subtilis and how this research is informing microbial evolution and 

ecology and aiding in the development of beneficial applications for biofilms. 
 


