36,601 research outputs found
Recommended from our members
Adaptive Frequency Neural Networks for Dynamic Pulse and Metre Perception.
Beat induction, the means by which humans listen to music and perceive a steady pulse, is achieved via a perceptualand cognitive process. Computationally modelling this phenomenon is an open problem, especially when processing expressive shaping of the music such as tempo change.To meet this challenge we propose Adaptive Frequency Neural Networks (AFNNs), an extension of Gradient Frequency Neural Networks (GFNNs).GFNNs are based on neurodynamic models and have been applied successfully to a range of difficult music perception problems including those with syncopated and polyrhythmic stimuli. AFNNs extend GFNNs by applying a Hebbian learning rule to the oscillator frequencies. Thus the frequencies in an AFNN adapt to the stimulus through an attraction to local areas of resonance, and allow for a great dimensionality reduction in the network.Where previous work with GFNNs has focused on frequency and amplitude responses, we also consider phase information as critical for pulse perception. Evaluating the time-based output, we find significantly improved re-sponses of AFNNs compared to GFNNs to stimuli with both steady and varying pulse frequencies. This leads us to believe that AFNNs could replace the linear filtering methods commonly used in beat tracking and tempo estimationsystems, and lead to more accurate methods
Development and collapse of an Oscillatoria bloom in Loch Leven during July 1994
During 1994, weekly spot-sampling of open water sites on Loch Leven took place from 16th March onwards. Very little difference between spot-sampling sites was observed from 16th March to 5th July. Throughout April and May there was a slow increase in levels of chlorophyll-a, followed by a rapid increase through June, reaching a maximum of 230 micrograms per litre. On 8th July there was a very rapid rise in water temperature, with a corresponding increase in dissolved oxygen and pH. At 0915 hours on 9th July there was a drop in all three variables. These changes were coincident with a marked reduction in chlorophyll-a values falling to 70 micrograms per litre on 12th July. On 16th July evidence of a resurgence of photosynthesis was observed
Weakly bound states of polar molecules in bilayers
We investigate a system of two polarized molecules in a layered trap. The
molecules reside in adjacent layers and interact purely via the dipole-dipole
interaction. We determine the properties of the ground state of the system as a
function of the dipole moment and polarization angle. A bound state is always
present in the system and in the weak binding limit the bound state extends to
a very large distance and shows universal behavior.Comment: Presented at the 21st European Conference on Few-Body Problems in
Physics, Salamanca, Spain, 30 August - 3 September 201
TDIR: Time-Delay Interferometric Ranging for Space-Borne Gravitational-Wave Detectors
Space-borne interferometric gravitational-wave detectors, sensitive in the
low-frequency (mHz) band, will fly in the next decade. In these detectors, the
spacecraft-to-spacecraft light-travel times will necessarily be unequal and
time-varying, and (because of aberration) will have different values on up- and
down-links. In such unequal-armlength interferometers, laser phase noise will
be canceled by taking linear combinations of the laser-phase observables
measured between pairs of spacecraft, appropriately time-shifted by the light
propagation times along the corresponding arms. This procedure, known as
time-delay interferometry (TDI), requires an accurate knowledge of the
light-time delays as functions of time. Here we propose a high-accuracy
technique to estimate these time delays and study its use in the context of the
Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging
technique, which relies on the TDI combinations themselves, as Time-Delay
Interferometric Ranging (TDIR). For every TDI combination, we show that, by
minimizing the rms power in that combination (averaged over integration times
s) with respect to the time-delay parameters, we obtain estimates
of the time delays accurate enough to cancel laser noise to a level well below
the secondary noises. Thus TDIR allows the implementation of TDI without the
use of dedicated inter-spacecraft ranging systems, with a potential
simplification of the LISA design. In this paper we define the TDIR procedure
formally, and we characterize its expected performance via simulations with the
\textit{Synthetic LISA} software package.Comment: 5 pages, 2 figure
Scattering of Pruppacher-Pitter raindrops at 30 GHz
Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated
LISA Science Results in the Presence of Data Disturbances
Each spacecraft in the Laser Interferometer Space Antenna houses a proof mass
which follows a geodesic through spacetime. Disturbances which change the proof
mass position, momentum, and/or acceleration will appear in the LISA data
stream as additive quadratic functions. These data disturbances inhibit signal
extraction and must be removed. In this paper we discuss the identification and
fitting of monochromatic signals in the data set in the presence of data
disturbances. We also present a preliminary analysis of the extent of science
result limitations with respect to the frequency of data disturbances
Bound States and Universality in Layers of Cold Polar Molecules
The recent experimental realization of cold polar molecules in the rotational
and vibrational ground state opens the door to the study of a wealth of
phenomena involving long-range interactions. By applying an optical lattice to
a gas of cold polar molecules one can create a layered system of planar traps.
Due to the long-range dipole-dipole interaction one expects a rich structure of
bound complexes in this geometry. We study the bilayer case and determine the
two-body bound state properties as a function of the interaction strength. The
results clearly show that a least one bound state will always be present in the
system. In addition, bound states at zero energy show universal behavior and
extend to very large radii. These results suggest that non-trivial bound
complexes of more than two particles are likely in the bilayer and in more
complicated chain structures in multi-layer systems.Comment: 6 pages, 5 figures. Revised version to be publishe
Simultaneous observations of solar protons inside and outside the magnetosphere Progress report
Simultaneous observations of solar protons inside and outside magnetosphere by Explorer XXXIII AND Injun I
- …