151 research outputs found

    Consequences of <i>in vitro</i> benzyl butyl phthalate exposure for blubber gene expression and insulin-induced Akt activation in juvenile grey seals

    Get PDF
    Plastic and plasticiser pollution of marine environments is a growing concern. Although phthalates, one group of plasticisers, are rapidly metabolised by mammals, they are found ubiquitously in humans and have been linked with metabolic disorders and altered adipose function. Phthalates may also present a threat to marine mammals, which need to rapidly accumulate and mobilise their large fat depots. High molecular weight (HMW) phthalates may be most problematic because they can accumulate in adipose. We used blubber explants from juvenile grey seals to examine the effects of overnight exposure to the HMW, adipogenic phthalate, benzyl butyl phthalate (BBzP) on expression of key adipose-specific genes and on phosphorylation of Akt in response to insulin. We found substantial differences in transcript abundance of Pparγ, Insig2, Fasn, Scd, Adipoq and Lep between moult stages, when animals were also experiencing differing mass changes, and between tissue depths, which likely reflect differences in blubber function. Akt abundance was higher in inner compared to outer blubber, consistent with greater metabolic activity in adipose closer to muscle than skin, and its phosphorylation was stimulated by insulin. Transcript abundance of Pparγ and Fasn (and Adipoq in some animals) were increased by short term (30 min) insulin exposure. In addition, overnight in vitro BBzP exposure altered insulin-induced changes in Pparγ (and Adipoq in some animals) transcript abundance, in a tissue depth and moult stage-specific manner. Basal or insulin-induced Akt phosphorylation was not changed. BBzP thus acted rapidly on the transcript abundance of key adipose genes in an Akt-independent manner. Our data suggest phthalate exposure could alter seal blubber development or function, although the whole animal consequences of these changes are not yet understood. Knowledge of typical phthalate exposures and toxicokinetics would help to contextualise these findings in terms of phthalate-induced metabolic disruption risk and consequences for marine mammal health

    Fitness correlates of blubber oxidative stress and cellular defences in grey seals (<i>Halichoerus grypus</i>):support for the life-history-oxidative stress theory from an animal model of simultaneous lactation and fasting

    Get PDF
    Life-history-oxidative stress theory predicts that elevated energy costs during reproduction reduce allocation to defences and increase cellular stress, with fitness consequences, particularly when resources are limited. As capital breeders, grey seals are a natural system in which to test this theory. We investigated oxidative damage (malondialdehyde (MDA) concentration) and cellular defences (relative mRNA abundance of heat shock proteins (Hsps) and redox enzymes (REs)) in blubber of wild female grey seals during the lactation fast (n = 17) and summer foraging (n = 13). Transcript abundance of Hsc70 increased, and Nox4, a pro-oxidant enzyme, decreased throughout lactation. Foraging females had higher mRNA abundance of some Hsps and lower RE transcript abundance and MDA concentrations, suggesting they experienced lower oxidative stress than lactating mothers, which diverted resources into pup rearing at the expense of blubber tissue damage. Lactation duration and maternal mass loss rate were both positively related to pup weaning mass. Pups whose mothers had higher blubber glutathione-S-transferase (GST) expression at early lactation gained mass more slowly. Higher glutathione peroxidase (GPx) and lower catalase (CAT) were associated with longer lactation but reduced maternal transfer efficiency and lower pup weaning mass. Cellular stress, and the ability to mount effective cellular defences, could proscribe lactation strategy in grey seal mothers and thus affect pup survival probability. These data support the life-history-oxidative stress hypothesis in a capital breeding mammal and suggest lactation is a period of heightened vulnerability to environmental factors that exacerbate cellular stress. Fitness consequences of stress may thus be accentuated during periods of rapid environmental change

    Signs of life:oxygen sensors confirm viability, measure oxygen consumption and provide rapid, effective contamination monitoring for field-based tissue culture

    Get PDF
    Understanding the ecology and evolution of wildlife and domesticated species requires knowledge of their physiological responses to environmental change and the constraints under which they operate. However, whole animal experiments are often limited in sample size and can be logistically and ethically challenging. Culture techniques represent a powerful approach, but are used infrequently in field research due to practical constraints. We used minimal tissue culture equipment in a remote field site for in vitro explant experiments using blubber from wild grey seals Halichoerus grypus. Assessing explant viability and detecting microbial contamination in remote field sites, where facilities are often small, unspecialised and more vulnerable to bacterial or fungal infection, present major challenges. We investigated whether oxygen‐sensitive planar optodes (OSPO) in closed system respirometry could be used to assess oxygen consumption by blubber explants from suckling and fasting wild seal pups as a proxy for viability. We also explored whether OSPOs could provide rapid information on whole animal relevant physiological metrics by determining whether explant oxygen consumption correlated with the nutritional state of the animal, blubber depth and other tissue metabolic properties, including glucose uptake, lactate production and lipolysis. Vials containing blubber explants consumed significant amounts of oxygen compared to controls, showing tissues were metabolically active. Oxygen consumption differed between nutritional states and blubber tissue depth. These differences were reflected in other tissue metabolic properties. Dissolved oxygen levels remained consistent over 24 hr in 94% of control vials containing only culture media. In 6% of control vials extremely rapid oxygen consumption preceded, by 2–3 days, colour changes in the phenol‐red containing media that indicate lactic acidosis from microbial metabolic activity. Oxygen use in control vials was, therefore, an effective monitoring system that provided vital early warning of media contamination, allowing stocks to be discarded, which prevented erroneous results and avoided waste of valuable field time and irreplaceable samples. OSPO are thus a useful tool for simultaneously assessing tissue oxygen consumption, investigating functional physiological differences and monitoring microbiological contamination in culture experiments, particularly in field laboratories studying live tissues from wildlife

    Predicting consequences of POP-induced disruption of blubber glucose uptake, mass gain rate and thyroid hormone levels for weaning mass in grey seal pups

    Get PDF
    Persistent organic pollutants (POPs) are endocrine disruptors that alter adipose tissue development, regulation and function. Top marine predators are particularly vulnerable because they possess large fat stores that accumulate POPs. However, links between endocrine or adipose tissue function disruption and whole animal energetics have rarely been investigated. We predicted the impact of alterations to blubber metabolic characteristics and circulating thyroid hormone (TH) levels associated with polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) on suckling mass gain and weaning mass in wild grey seal pups. Glucose uptake by inner blubber was a strong predictor of whole animal mass gain rate, which in turn, resulted in heavier weaning mass. Weaning mass was predicted to increase by 3.7 ± 1.59 (sem) %, through increased mass gain rate, in the absence of the previously reported suppressive effect of dioxin-like PCB (DL-PCBs) on blubber glucose uptake. PBDEs were, conversely, associated with faster mass gain. Alleviation of this effect was predicted to reduce weaning mass by 6.02 ± 1.86% (sem). To better predict POPs effects on energy balance, it is crucial to determine if and how PBDEs promote mass gain in grey seal pups. Weaning mass was negatively related to total T3 (TT3) levels. A 20% (range = 9.3–31.7%) reduction in TT3 by DL-PCBs partially overcame the effect of DL-PCB -mediated reduction in blubber glucose uptake. Overall, DL-PCBs were thus predicted to reduce weaning mass by 1.86 ± 1.60%. Organohalogen impacts on whole-animal energy balance in grey seal pups appear to partially offset each other through opposing effects on different mechanisms. POP effects were generally minor, but the largest POP-induced reductions in weaning mass were predicted to occur in pups that were already small. Since weaning mass is positively related to first-year survival, POPs may disproportionately affect smaller individuals, and could continue to have population-level impacts even when levels are relatively low compared to historical values. Our findings show how in vitro experiments combined with measurements in vivo can help elucidate mechanisms that underpin energy balance regulation and help to quantify the magnitude of disruptive effects by contaminants and other stressors in wildlife

    BAC-FISH refutes report of an 8p22–8p23.1 inversion or duplication in 8 patients with Kabuki syndrome

    Get PDF
    BACKGROUND: Kabuki syndrome is a multiple congenital anomaly/mental retardation syndrome. The syndrome is characterized by varying degrees of mental retardation, postnatal growth retardation, distinct facial characteristics resembling the Kabuki actor's make-up, cleft or high-arched palate, brachydactyly, scoliosis, and persistence of finger pads. The multiple organ involvement suggests that this is a contiguous gene syndrome but no chromosomal anomalies have been isolated as an etiology. Recent studies have focused on possible duplications in the 8p22–8p23.1 region but no consensus has been reached. METHODS: We used bacterial artificial chromosome-fluorescent in-situ hybridization (BAC-FISH) and G-band analysis to study eight patients with Kabuki syndrome. RESULTS: Metaphase analysis revealed no deletions or duplications with any of the BAC probes. Interphase studies of the Kabuki patients yielded no evidence of inversions when using three-color FISH across the region. These results agree with other research groups' findings but disagree with the findings of Milunsky and Huang. CONCLUSION: It seems likely that Kabuki syndrome is not a contiguous gene syndrome of the 8p region studied

    A pooled analysis of 10 case–control studies of melanoma and oral contraceptive use

    Get PDF
    Data regarding the effects of oral contraceptive use on women's risk of melanoma have been difficult to resolve. We undertook a pooled analysis of all case–control studies of melanoma in women completed as of July 1994 for which electronic data were available on oral contraceptive use along with other melanoma risk factors such as hair colour, sun sensitivity, family history of melanoma and sun exposure. Using the original data from each investigation (a total of 2391 cases and 3199 controls), we combined the study-specific odds ratios and standard errors to obtain a pooled estimate that incorporates inter-study heterogeneity. Overall, we observed no excess risk associated with oral contraceptive use for 1 year or longer compared to never use or use for less than 1 year (pooled odds ratio (pOR)=0.86; 95% CI=0.74–1.01), and there was no evidence of heterogeneity between studies. We found no relation between melanoma incidence and duration of oral contraceptive use, age began, year of use, years since first use or last use, or specifically current oral contraceptive use. In aggregate, our findings do not suggest a major role of oral contraceptive use on women's risk of melanoma
    corecore