797 research outputs found

    SOCCER THROW-IN KINEMATICS

    Get PDF
    Soccer is played extensively throughout the world. As the popularity of soccer increases in America, a development of the teaching and coaching techniques is needed. Despite the increasing amount of soccer literature, the soccer throw-in skill has been understated. Up to date, only a few studies have assessed the throw-in biomechanically (Lueft, 1965; Kline, 1980; Levendusky, 1982) and have provided some descriptive data concerning kinematics and kinetics. The throw-in is a unique throwing motion in that both hands must be used, the ball must come from behind the head forward, and both feet must maintain contact with the ground until release as stipulated by the laws of the game (FIFA, 1977). As a result, the coordination of the upper body movements and the supporting lower body enable a player to throw for longer distances

    Characterization of wetting using topological principles

    Get PDF
    Hypothesis Understanding wetting behavior is of great importance for natural systems and technological applications. The traditional concept of contact angle, a purely geometrical measure related to curvature, is often used for characterizing the wetting state of a system. It can be determined from Young's equation by applying equilibrium thermodynamics. However, whether contact angle is a representative measure of wetting for systems with significant complexity is unclear. Herein, we hypothesize that topological principles based on the Gauss-Bonnet theorem could yield a robust measure to characterize wetting. Theory and Experiments We introduce a macroscopic contact angle based on the deficit curvature of the fluid interfaces that are imposed by contacts with other immiscible phases. We perform sessile droplet simulations followed by multiphase experiments for porous sintered glass and Bentheimer sandstone to assess the sensitivity and robustness of the topological approach and compare the results to other traditional approaches. Findings We show that the presented topological principle is consistent with thermodynamics under the simplest conditions through a variational analysis. Furthermore, we elucidate that at sufficiently high image resolution the proposed topological approach and local contact angle measurements are comparable. While at lower resolutions, the proposed approach provides more accurate results being robust to resolution-based effects. Overall, the presented concepts open new pathways to characterize the wetting state of complex systems and theoretical developments to study multiphase systems.Comment: 11 pages, 9 figures, 1 tabl

    Nonfatal Strangulation in a Sample of Domestically Violent Stalkers: The Importance of Recognizing Coercively Controlling Behaviors

    Get PDF
    © 2019 International Association for Correctional and Forensic Psychology. Strangulation is different to other types of physical violence as it often leaves no visible injuries and is frequently motivated by coercive control. Few studies have explored nonfatal strangulation and coercive control, and no studies have explored these factors within a sample of stalkers. Given that stalking perpetrators exhibit many of the coercively controlling behaviors related to nonfatal strangulation, the current study explored nonfatal strangulation and other coercively controlling behaviors in a stalking sample. A police dataset of 9,884 cases of domestic violence that involved stalking was analyzed. Results revealed that coercive control and related behaviors of excessive jealousy, victim isolation, victim fear, and victim’s belief that the perpetrator will kill them were associated with higher likelihood of having experienced nonfatal strangulation. These results may help first responders to identify victims at risk of nonfatal strangulation and suggest a need for nonfatal strangulation to be a criminal offense

    The Golden Rule:Interfaith Peacemaking and the Charter for Compassion

    Get PDF
    The Charter for Compassion has been signed by over two million people from around the world and partnered with hundreds of interfaith organizations and cities seeking to put into practice the Golden Rule, common to the main faith traditions, of doing unto others as you would be done by. This article sets the Charter within the context of a post secular international society and faith-based diplomacy, in which religious interreligious initiatives emerge as serious, rather than peripheral, actors in developing sustainable peace making through bottom-up approaches. The article critically engages with the Charter's claim that ‘any interpretation of scripture that breeds violence, hatred or disdain is illegitimate’ while accepting that peaceful interpretations of scriptures are helpful to peace processes where religious actors are involved. The article explores the claims of the Charter for Compassion International as they seek to make peace through compassion, before concluding that the Charter for Compassion is a long-term project aimed at changing hearts and minds but has had limited substantive impact to date

    Functional characterisation of human synaptic genes expressed in the Drosophila brain

    Get PDF
    Drosophila melanogaster is an established and versatile model organism. Here we describe and make available a collection of transgenic Drosophila strains expressing human synaptic genes. The collection can be used to study and characterise human synaptic genes and their interactions and as controls for mutant studies. It was generated in a way that allows the easy addition of new strains, as well as their combination. In order to highlight the potential value of the collection for the characterisation of human synaptic genes we also use two assays, investigating any gain-of-function motor and/or cognitive phenotypes in the strains in this collection. Using these assays we show that among the strains made there are both types of gain-of-function phenotypes investigated. As an example, we focus on the three strains expressing human tyrosine protein kinase Fyn, the small GTPase Rap1a and human Arc, respectively. Of the three, the first shows a cognitive gain-of-function phenotype while the second a motor gain-of-function phenotype. By contrast, Arc, which has no Drosophila ortholog, shows no gain-of-function phenotype

    The Dark Energy Survey Data Processing and Calibration System

    Full text link
    The Dark Energy Survey (DES) is a 5000 deg2 grizY survey reaching characteristic photometric depths of 24th magnitude (10 sigma) and enabling accurate photometry and morphology of objects ten times fainter than in SDSS. Preparations for DES have included building a dedicated 3 deg2 CCD camera (DECam), upgrading the existing CTIO Blanco 4m telescope and developing a new high performance computing (HPC) enabled data management system (DESDM). The DESDM system will be used for processing, calibrating and serving the DES data. The total data volumes are high (~2PB), and so considerable effort has gone into designing an automated processing and quality control system. Special purpose image detrending and photometric calibration codes have been developed to meet the data quality requirements, while survey astrometric calibration, coaddition and cataloging rely on new extensions of the AstrOmatic codes which now include tools for PSF modeling, PSF homogenization, PSF corrected model fitting cataloging and joint model fitting across multiple input images. The DESDM system has been deployed on dedicated development clusters and HPC systems in the US and Germany. An extensive program of testing with small rapid turn-around and larger campaign simulated datasets has been carried out. The system has also been tested on large real datasets, including Blanco Cosmology Survey data from the Mosaic2 camera. In Fall 2012 the DESDM system will be used for DECam commissioning, and, thereafter, the system will go into full science operations.Comment: 12 pages, submitted for publication in SPIE Proceeding 8451-1

    Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder

    Get PDF
    Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic ‘hub’ genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs) was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders
    corecore