14 research outputs found

    Messung thorakaler [18F]Fluordesoxyglukose-Aufnahme mittels Positronen-Emissions-Tomographie/Computertomographie bei Patienten mit pulmonaler Hypertonie

    Get PDF
    Positron emission tomography (PET) visualizes increased cellular [18F]fluorodeoxyglucose ([18F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [18F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [18F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH. Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated. The [18F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≄25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≄480 dyn·s/cm5 (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [18F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r=0.55, r=0.42, respectively). Pulmonary and cardiac [18F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to play a certain role in terms of severity of PH. These results suggest that [18F]FDG-PET imaging can help understand the pathophysiology of PH as a proliferative pulmonary disease

    CT Texture Analysis of Pulmonary Neuroendocrine Tumors—Associations with Tumor Grading and Proliferation

    Get PDF
    Texture analysis derived from computed tomography (CT) might be able to provide clinically relevant imaging biomarkers and might be associated with histopathological features in tumors. The present study sought to elucidate the possible associations between texture features derived from CT images with proliferation index Ki-67 and grading in pulmonary neuroendocrine tumors. Overall, 38 patients (n = 22 females, 58%) with a mean age of 60.8 ± 15.2 years were included into this retrospective study. The texture analysis was performed using the free available Mazda software. All tumors were histopathologically confirmed. In discrimination analysis, “S(1,1)SumEntrp” was significantly different between typical and atypical carcinoids (mean 1.74 ± 0.11 versus 1.79 ± 0.14, p = 0.007). The correlation analysis revealed a moderate positive association between Ki-67 index with the first order parameter kurtosis (r = 0.66, p = 0.001). Several other texture features were associated with the Ki-67 index, the highest correlation coefficient showed “S(4,4)InvDfMom” (r = 0.59, p = 0.004). Several texture features derived from CT were associated with the proliferation index Ki-67 and might therefore be a valuable novel biomarker in pulmonary neuroendocrine tumors. “Sumentrp” might be a promising parameter to aid in the discrimination between typical and atypical carcinoids

    Messung thorakaler [18F]Fluordesoxyglukose-Aufnahme mittels Positronen-Emissions-Tomographie/Computertomographie bei Patienten mit pulmonaler Hypertonie

    Get PDF
    Positron emission tomography (PET) visualizes increased cellular [18F]fluorodeoxyglucose ([18F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [18F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [18F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH. Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated. The [18F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≄25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≄480 dyn·s/cm5 (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [18F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r=0.55, r=0.42, respectively). Pulmonary and cardiac [18F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to play a certain role in terms of severity of PH. These results suggest that [18F]FDG-PET imaging can help understand the pathophysiology of PH as a proliferative pulmonary disease

    Messung thorakaler [18F]Fluordesoxyglukose-Aufnahme mittels Positronen-Emissions-Tomographie/Computertomographie bei Patienten mit pulmonaler Hypertonie

    No full text
    Positron emission tomography (PET) visualizes increased cellular [18F]fluorodeoxyglucose ([18F]FDG) uptake. Pulmonary hypertension (PH) is conceived of a proliferative disease of the lung vessels. Increased glucose uptake can be quantified as pulmonary [18F]FDG uptake via PET imaging. Because the angioproliferative mechanisms in PH are still in need of further description, the aim of the present study was to investigate whether [18F]FDG PET/CT imaging can elucidate these pathophysiologic mechanisms in different etiologies of PH. Patients (n = 109) with end-stage pulmonary disease being evaluated for lung transplant were included in this observational study. Mean standardized uptake value (SUVmean) of predefined regions of interest in lung parenchyma (LP), left (LV), and right ventricle (RV) of the heart, and SUVmax in pulmonary artery (PA) were determined and normalized to liver uptake. These SUV ratios (SUVRs) were compared with results from right heart catheterization (mean pulmonary artery pressure [mPAP], pulmonary vascular resistance [PVR]), and serum N-terminal pro-brain natriuretic peptide. Group comparisons were performed and Pearson correlation coefficients (r) were calculated. The [18F]FDG uptake ratios in LP, RV, RV/LV, and PA, but not in LV, were found to be significantly higher in both patients with mPAP ≄25 mm Hg (P = 0.013, P = 0.006, P = 0.049, P = 0.002, P = 0.68, respectively) and with PVR ≄480 dyn·s/cm5 (P < 0.001, P = 0.045, P < 0.001, P < 0.001, P = 0.26, respectively). The [18F]FDG uptake in these regions positively correlated also with mPAP, PVR, and N-terminal pro-brain natriuretic peptide. The SUVR of PA positively correlated with the SUVR of LP and RV (r=0.55, r=0.42, respectively). Pulmonary and cardiac [18F]FDG uptake in PET imaging positively correlated with the presence and severity of PH in patients with end-stage pulmonary disease. Increased glucose metabolism in the central PAs seems to play a certain role in terms of severity of PH. These results suggest that [18F]FDG-PET imaging can help understand the pathophysiology of PH as a proliferative pulmonary disease

    Tobacco-smoking induced GPR15-expressing T cells in blood do not indicate pulmonary damage

    No full text
    Abstract Background Recently, it was shown that chronic tobacco smoking evokes specific cellular and molecular changes in white blood cells by an excess of G protein-coupled receptor 15 (GPR15)-expressing T cells as well as a hypomethylation at DNA CpG site cg05575921 in granulocytes. In the present study, we aimed to clarify the general usefulness of these two biomarkers as putative signs of non-cancerous change in homeostasis of the lungs. Methods In a clinical cohort consisting of 42 patients with chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and pneumonia and a control cohort of 123 volunteers, the content of GPR15-expressing blood cells as well as the degree of methylation at cg05575921 were analysed by flow-cytometry and pyrosequencing, respectively. Smoking behaviour was estimated by questionnaire and cotinine level in plasma. Results Never-smoking patients could be distinguished from former and current smokers by both the proportion of GPR15-expressing T cells as well as cg05575921 methylation in granulocytes, with 100% and 97% specificity and 100% sensitivity, respectively. However, both parameters were not affected by lung diseases. The degrees of both parameters were not changed neither in non-smoking nor smoking patients, compared to appropriate control cohorts of volunteers. Conclusions The degree of GPR15-expressing cells among T cells as well as the methylation at cg05575921 in granulocytes in blood are both rather signs of tobacco-smoking induced systemic inflammation because they don’t indicate specifically non-cancerous pathological changes in the lungs

    CT Texture Analysis of Pulmonary Neuroendocrine Tumors—Associations with Tumor Grading and Proliferation

    No full text
    Texture analysis derived from computed tomography (CT) might be able to provide clinically relevant imaging biomarkers and might be associated with histopathological features in tumors. The present study sought to elucidate the possible associations between texture features derived from CT images with proliferation index Ki-67 and grading in pulmonary neuroendocrine tumors. Overall, 38 patients (n = 22 females, 58%) with a mean age of 60.8 ± 15.2 years were included into this retrospective study. The texture analysis was performed using the free available Mazda software. All tumors were histopathologically confirmed. In discrimination analysis, “S(1,1)SumEntrp” was significantly different between typical and atypical carcinoids (mean 1.74 ± 0.11 versus 1.79 ± 0.14, p = 0.007). The correlation analysis revealed a moderate positive association between Ki-67 index with the first order parameter kurtosis (r = 0.66, p = 0.001). Several other texture features were associated with the Ki-67 index, the highest correlation coefficient showed “S(4,4)InvDfMom” (r = 0.59, p = 0.004). Several texture features derived from CT were associated with the proliferation index Ki-67 and might therefore be a valuable novel biomarker in pulmonary neuroendocrine tumors. “Sumentrp” might be a promising parameter to aid in the discrimination between typical and atypical carcinoids

    CT Texture Analysis of Pulmonary Neuroendocrine Tumors—Associations with Tumor Grading and Proliferation

    No full text
    Texture analysis derived from computed tomography (CT) might be able to provide clinically relevant imaging biomarkers and might be associated with histopathological features in tumors. The present study sought to elucidate the possible associations between texture features derived from CT images with proliferation index Ki-67 and grading in pulmonary neuroendocrine tumors. Overall, 38 patients (n = 22 females, 58%) with a mean age of 60.8 ± 15.2 years were included into this retrospective study. The texture analysis was performed using the free available Mazda software. All tumors were histopathologically confirmed. In discrimination analysis, “S(1,1)SumEntrp” was significantly different between typical and atypical carcinoids (mean 1.74 ± 0.11 versus 1.79 ± 0.14, p = 0.007). The correlation analysis revealed a moderate positive association between Ki-67 index with the first order parameter kurtosis (r = 0.66, p = 0.001). Several other texture features were associated with the Ki-67 index, the highest correlation coefficient showed “S(4,4)InvDfMom” (r = 0.59, p = 0.004). Several texture features derived from CT were associated with the proliferation index Ki-67 and might therefore be a valuable novel biomarker in pulmonary neuroendocrine tumors. “Sumentrp” might be a promising parameter to aid in the discrimination between typical and atypical carcinoids

    CT Texture Analysis of Pulmonary Neuroendocrine Tumors—Associations with Tumor Grading and Proliferation

    No full text
    Texture analysis derived from computed tomography (CT) might be able to provide clinically relevant imaging biomarkers and might be associated with histopathological features in tumors. The present study sought to elucidate the possible associations between texture features derived from CT images with proliferation index Ki-67 and grading in pulmonary neuroendocrine tumors. Overall, 38 patients (n = 22 females, 58%) with a mean age of 60.8 ± 15.2 years were included into this retrospective study. The texture analysis was performed using the free available Mazda software. All tumors were histopathologically confirmed. In discrimination analysis, “S(1,1)SumEntrp” was significantly different between typical and atypical carcinoids (mean 1.74 ± 0.11 versus 1.79 ± 0.14, p = 0.007). The correlation analysis revealed a moderate positive association between Ki-67 index with the first order parameter kurtosis (r = 0.66, p = 0.001). Several other texture features were associated with the Ki-67 index, the highest correlation coefficient showed “S(4,4)InvDfMom” (r = 0.59, p = 0.004). Several texture features derived from CT were associated with the proliferation index Ki-67 and might therefore be a valuable novel biomarker in pulmonary neuroendocrine tumors. “Sumentrp” might be a promising parameter to aid in the discrimination between typical and atypical carcinoids

    New developments in the imaging of lung cancer

    Get PDF
    Radiological and nuclear medicine methods play a fundamental role in the diagnosis and staging of patients with lung cancer. Imaging is essential in the detection, characterisation, staging and follow-up of lung cancer. Due to the increasing evidence, low-dose chest computed tomography (CT) screening for the early detection of lung cancer is being introduced to the clinical routine in several countries. Radiomics and radiogenomics are emerging fields reliant on artificial intelligence to improve diagnosis and personalised risk stratification. Ultrasound- and CT-guided interventions are minimally invasive methods for the diagnosis and treatment of pulmonary malignancies. In this review, we put more emphasis on the new developments in the imaging of lung cancer
    corecore