134 research outputs found
Novel Hybrid Electrode Using Transparent Conductive Oxide and Silver Nanoparticle Mesh for Silicon Solar Cell Applications
AbstractTransparent conductive oxides (TCOs) have been widely used as the front electrodes for various solar cell structures, including heterojunction silicon wafer solar cells and the vast majority of thin-film solar cells. For heterojunction silicon wafer solar cells, the front TCO layer not only serves as a top electrode (by enhancing the lateral conductance of the underlying amorphous silicon film), but also as an antireflection coating. These requirements make it difficult to simultaneously achieve excellent conductivity and transparency, and thus only high-quality indium tin oxide (ITO) has as yet found its way into industrial heterojunction silicon wafer solar cells. For thin-film solar cells, in order to provide efficient lateral conductance of the charge carriers, normally a TCO layer of a few hundred nanometers thickness is used which impedes the optical transparency due to the enhanced free carrier absorption. To reduce the conflict between conductivity and transparency, and to separately engineer the electrical and optical properties, a hybrid electrode is proposed and fabricated by us which consists of a TCO layer (optical layer) and a silver nanoparticle mesh (electrical layer). This hybrid electrode is demonstrated to have a 10 times higher lateral conductance compared to a single TCO layer, while maintaining high light transmission in a wide wavelength range. Due to the excellent performance of the hybrid electrode, it is demonstrated that such an electrode is suitable for various solar cell structures
Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide
We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc) of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production
Recommended from our members
Roadmap on commercialization of metal halide perovskite photovoltaics
Perovskite solar cells (PSCs) represent one of the most promising emerging photovoltaic technologies due to their high power conversion efficiency. However, despite the huge progress made not only in terms of the efficiency achieved, but also fundamental understanding of the relevant physics of the devices and issues which affect their efficiency and stability, there are still unresolved problems and obstacles on the path toward commercialization of this promising technology. In this roadmap, we aim to provide a concise and up to date summary of outstanding issues and challenges, and the progress made toward addressing these issues. While the format of this article is not meant to be a comprehensive review of the topic, it provides a collection of the viewpoints of the experts in the field, which covers a broad range of topics related to PSC commercialization, including those relevant for manufacturing (scaling up, different types of devices), operation and stability (various factors), and environmental issues (in particular the use of lead). We hope that the article will provide a useful resource for researchers in the field and that it will facilitate discussions and move forward toward addressing the outstanding challenges in this fast-developing field
Stress testing and non-invasive coronary angiography in patients with suspected coronary artery disease: time for a new paradigm
Diagnosis and management of coronary artery disease represents major challenges to our health care system, affecting millions of patients each year. Until recently, the diagnosis of coronary artery disease was possible only through cardiac catheterization and invasive coronary angiography. To avoid the risks of an invasive procedure, stress testing is often employed for an initial assessment of patients with suspected coronary artery disease, serving as a gatekeeper for cardiac catheterization. With the emergence of non-invasive coronary angiography, the question arises if such a strategy is still sensible, particularly, in view of only a modest agreement between stress testing results and the presence of coronary artery disease established by cardiac catheterization. Much data in support of the diagnostic accuracy and prognostic value of non-invasive coronary angiography by computed tomography have emerged within the last few years. These data challenge the role of stress testing as the initial imaging modality in patients with suspected coronary artery disease. This article reviews the clinical utility, limitations, as well as the hazards of stress testing compared with non-invasive coronary artery imaging by computed tomography. Finally, the implications of this review are discussed in relation to clinical practice
Advanced characterisation of silicon wafer solar cells
10.1016/j.egypro.2012.02.017Energy Procedia15147-15
Effects of Overnight Oxidation on Perovskite Solar Cells with Co(III)TFSI Co-Doped Spiro-OMeTAD
Metal-halide perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies in recent years, and spiro-OMeTAD plays a significant role as a hole transport material in PSCs with record efficiencies. However, further studies and systematic experimental procedures on doped spiro-OMeTAD are required to enable a reliable process for potential commercialization. In particular, the effect of the prolonged oxidation of Co(III)TFSI co-doped spiro-OMeTAD has been one of the unanswered topics in PSC research. In this work, we investigate the influence of overnight oxidation on the performance of PSCs with Co(III)TFSI co-doped spiro-OMeTAD. Co-doping spiro-OMeTAD with Co(III) complexes instantly oxidizes spiro-OMeTAD, leading to an improvement in power conversion efficiency (PCE) from 13.1% (LiTFSI-doped spiro-OMeTAD) to 17.6% (LiTFSI + Co(III)TFSI-doped spiro-OMeTAD). It is found that PSCs with spiro-OMeTAD co-doped with Co(III)TFSI without overnight oxidation could retain around 90% of the efficiency under maximum power point tracking at 1-sun illumination for 3000 min, whereas the efficiencies drop by more than 30% when Co(III)TFSI co-doped spiro-OMeTAD is exposed to overnight oxidation. Hence, it is important to inhibit the unnecessary overnight oxidation of Co(III)TFSI co-doped spiro-OMeTAD so as to save excess fabrication time and overcome the poor stability issues
Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass
The changes in open-circuit voltage (Voc),
short-circuit current density (Jsc), and
internal quantum efficiency (IQE) of aLuminum induced crystallization, ion-assisted deposition (ALICIA) polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA) treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation) are examined.
Voc
improvements from 130 mV to 430 mV, Jsc
improvements from 1.2 mA/cm2
to 11.3 mA/cm2, and peak IQE improvements from
16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion
length of at least 1 μm) due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance
- …