94 research outputs found

    Efficiency of gas cooling and accretion at the disc-corona interface

    Get PDF
    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding hot corona. Indeed, at the disc-corona interface, the mixing between the cold/metal-rich disc gas (T ~ 10^6 K) can dramatically reduce the cooling time of a portion of the corona and produce its condensation and accretion. We studied the interaction between fountain clouds and corona in different galactic environments through parsec-scale hydrodynamical simulations, including the presence of thermal conduction, a key mechanism that influences gas condensation. Our simulations showed that the coronal gas condensation strongly depends on the galactic environment, in particular it is less efficient for increasing virial temperature/mass of the haloes where galaxies reside and it is fully ineffective for objects with virial masses larger than 10^13 Msun. This result implies that the coronal gas cools down quickly in haloes with low-intermediate virial mass (Mvir <~ 3 x 10^12 Msun) but the ability to cool the corona decreases going from late-type to early-type disc galaxies, potentially leading to the switching off of accretion and the quenching of star formation in massive systems.Comment: 14 pages, 8 figures, accepted for publication in MNRA

    The survival of gas clouds in the Circumgalactic Medium of Milky Way-like galaxies

    Get PDF
    Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called 'circumgalactic medium' (CGM). To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we performed a set of hydrodynamical simulations of cold (T = 10^4 K) neutral gas clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4 cm^-3) coronal medium, typical of Milky Way-like galaxies at large galactocentric distances (~ 50-150 kpc). We explored the effects of different initial values of relative velocity and radius of the clouds. Our simulations were performed on a two-dimensional grid with constant mesh size (2 pc) and they include radiative cooling, photoionization heating and thermal conduction. We found that for large clouds (radii larger than 250 pc) the cool gas survives for very long time (larger than 250 Myr): despite that they are partially destroyed and fragmented into smaller cloudlets during their trajectory, the total mass of cool gas decreases at very low rates. We found that thermal conduction plays a significant role: its effect is to hinder formation of hydrodynamical instabilities at the cloud-corona interface, keeping the cloud compact and therefore more difficult to destroy. The distribution of column densities extracted from our simulations are compatible with those observed for low-temperature ions (e.g. SiII and SiIII) and for high-temperature ions (OVI) once we take into account that OVI covers much more extended regions than the cool gas and, therefore, it is more likely to be detected along a generic line of sight.Comment: 12 pages, 10 figures. Accepted for publication in MNRA

    The origin of the high-velocity cloud complex C

    Get PDF
    High-velocity clouds consist of cold gas that appears to be raining down from the halo to the disc of the Milky Way. Over the past fifty years, two competing scenarios have attributed their origin either to gas accretion from outside the Galaxy or to circulation of gas from the Galactic disc powered by supernova feedback (galactic fountain). Here we show that both mechanisms are simultaneously at work. We use a new galactic fountain model combined with high-resolution hydrodynamical simulations. We focus on the prototypical cloud complex C and show that it was produced by an explosion that occurred in the Cygnus-Outer spiral arm about 150 million years ago. The ejected material has triggered the condensation of a large portion of the circumgalactic medium and caused its subsequent accretion onto the disc. This fountain-driven cooling of the lower Galactic corona provides the low-metallicity gas required by chemical evolution models of the Milky Way's disc.Comment: 6 pages, 4 figures, 1 table; accepted by MNRA

    Testosterone decreases adiponectin levels in female to male transsexuals

    Get PDF
    Aim: To evaluate the effect of testosterone (T) on adiponectin serum levels in transsexual female patients. Methods: We measured adiponectin, leptin, luteinizing hormone and follicle stimulating hormone, T, estradiol, lipid profile, biochemical parameters and body composition in 16 transsexual female patients at baseline and after 6 months of T treatment (100 mg Testoviron Depot /10 days, i.m.). Results: Adiponectin levels were 16.9 ± 7.3 mg/mL at baseline and 13.5 ± 7.4 mg/mL at month 6 of T treatment (P < 0.05). Leptin and high-density lipoprotein cholesterol decreased significantly, whereas body mass index, waist circumference and lean body mass increased significantly after 6 months of T treatment. No changes in insulin or Homeostasis Model Assessment were detected. Conclusion: T can significantly reduce adiponectin serum levels in transsexual female patients

    Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry

    Get PDF
    BACKGROUND: The inflammatory response occurring in acute myocardial infarction (AMI) has been proposed as a potential pharmacological target. Sodium-glucose co-transporter 2 inhibitors (SGLT2-I) currently receive intense clinical interest in patients with and without diabetes mellitus (DM) for their pleiotropic beneficial effects. We tested the hypothesis that SGLT2-I have anti-inflammatory effects along with glucose-lowering properties. Therefore, we investigated the link between stress hyperglycemia, inflammatory burden, and infarct size in a cohort of type 2 diabetic patients presenting with AMI treated with SGLT2-I versus other oral anti-diabetic (OAD) agents. METHODS: In this multicenter international observational registry, consecutive diabetic AMI patients undergoing percutaneous coronary intervention (PCI) between 2018 and 2021 were enrolled. Based on the presence of anti-diabetic therapy at the admission, patients were divided into those receiving SGLT2-I (SGLT-I users) versus other OAD agents (non-SGLT2-I users). The following inflammatory markers were evaluated at different time points: white-blood-cell count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), neutrophil-to-platelet ratio (NPR), and C-reactive protein. Infarct size was assessed by echocardiography and by peak troponin levels. RESULTS: The study population consisted of 583 AMI patients (with or without ST-segment elevation): 98 SGLT2-I users and 485 non-SGLT-I users. Hyperglycemia at admission was less prevalent in the SGLT2-I group. Smaller infarct size was observed in patients treated with SGLT2-I compared to non-SGLT2-I group. On admission and at 24&nbsp;h, inflammatory indices were significantly higher in non-SGLT2-I users compared to SGLT2-I patients, with a significant increase in neutrophil levels at 24&nbsp;h. At multivariable analysis, the use of SGLT2-I was a significant predictor of reduced inflammatory response (OR 0.457, 95% CI 0.275-0.758, p = 0.002), independently of age, admission creatinine values, and admission glycemia. Conversely, peak troponin values and NSTEMI occurrence were independent predictors of a higher inflammatory status. CONCLUSIONS: Type 2 diabetic AMI patients receiving SGLT2-I exhibited significantly reduced inflammatory response and smaller infarct size compared to those receiving other OAD agents, independently of glucose-metabolic control. Our findings are hypothesis generating and provide new insights on the cardioprotective effects of SGLT2-I in the setting of coronary artery disease. TRIAL REGISTRATION: Data are part of the ongoing observational registry: SGLT2-I AMI PROTECT. CLINICALTRIALS: gov Identifier: NCT05261867

    Performance of Prognostic Scoring Systems in MINOCA: A Comparison among GRACE, TIMI, HEART, and ACEF Scores

    Get PDF
    Background: the prognosis of patients with myocardial infarction with non-obstructive coronary arteries (MINOCA) is not benign; thus, prompting the need to validate prognostic scoring systems for this population. Aim: to evaluate and compare the prognostic performance of GRACE, TIMI, HEART, and ACEF scores in MINOCA patients. Methods: A total of 250 MINOCA patients from January 2017 to September 2021 were included. For each patient, the four scores at admission were retrospectively calculated. The primary outcome was a composite of all-cause death and acute myocardial infarction (AMI) at 1-year follow-up. The ability to predict 1-year all-cause death was also tested. Results: Overall, the tested scores presented a sub-optimal performance in predicting the composite major adverse event in MINOCA patients, showing an AUC ranging between 0.7 and 0.8. Among them, the GRACE score appeared to be the best in predicting all-cause death, reaching high specificity with low sensitivity. The best cut-off identified for the GRACE score was 171, higher compared to the cut-off of 140 generally applied to identify high-risk patients with obstructive AMI. When the scores were tested for prediction of 1-year all-cause death, the GRACE and the ACEF score showed very good accuracy (AUC = 0.932 and 0.828, respectively). Conclusion: the prognostic scoring tools, validated in AMI cohorts, could be useful even in MINOCA patients, although their performance appeared sub-optimal, prompting the need for risk assessment tools specific to MINOCA patients

    Outcomes in diabetic patients treated with SGLT2-Inhibitors with acute myocardial infarction undergoing PCI: The SGLT2-I AMI PROTECT Registry

    Get PDF
    Aims: To investigate in-hospital and long-term prognosis in T2DM patients presenting with acute myocardial infarction (AMI) treated with SGLT2-I versus other oral anti-diabetic agents (non-SGLT2-I users). Methods: In this multicenter international registry all consecutive diabetic AMI patients undergoing percutaneous coronary intervention between 2018 and 2021 were enrolled and, based on the admission anti-diabetic therapy, divided into SGLT-I users versus non-SGLT2-I users. The primary endpoint was defined as a composite of cardiovascular death, recurrent AMI, and hospitalization for HF (MACE). Secondary outcomes included i) in-hospital cardiovascular death, recurrent AMI, occurrence of arrhythmias, and contrast-induced acute kidney injury (CI-AKI); ii) long-term cardiovascular mortality, recurrent AMI, heart failure (HF) hospitalization. Results: The study population consisted of 646 AMI patients (with or without ST-segment elevation): 111 SGLT2-I users and 535 non-SGLT-I users. The use of SGLT2-I was associated with a significantly lower in-hospital cardiovascular death, arrhythmic burden, and occurrence of CI-AKI (all p &lt; 0.05). During a median follow-up of 24 ± 13 months, the primary composite endpoint, as well as cardiovascular mortality and HF hospitalization were lower for SGLT2-I users compared to non-SGLT2-I patients (p &lt; 0.04 for all). After adjusting for confounding factors, the use of SGLT2-I was identified as independent predictor of reduced MACE occurrence (HR=0.57; 95%CI:0.33–0.99; p = 0.039) and HF hospitalization (HR=0.46; 95%CI:0.21–0.98; p = 0.041). Conclusions: In T2DM AMI patients, the use of SGLT2-I was associated with a lower risk of adverse cardiovascular outcomes during index hospitalization and long-term follow-up. Our findings provide new insights into the cardioprotective effects of SGLT2-I in the setting of AMI. Registration: Data are part of the observational international registry: SGLT2-I AMI PROTECT. ClinicalTrials.gov Identifier: NCT05261867

    Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence

    Get PDF
    The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high velocity dispersions and a steep size-linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 (‘the Brick’), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size-linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud’s gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR by inducing predominantly solenoidal turbulent modes
    • …
    corecore