3,013 research outputs found

    Gamma Ray Astronomy with Magnetized Zevatrons

    Full text link
    Nearby sources of cosmic rays up to a ZeV(=10^21 eV) could be observed with a multi-messenger approach including secondary gamma-rays and neutrinos. If cosmic rays above ~10^18 eV are produced in magnetized environments such as galaxy clusters, the flux of secondary gamma-rays below ~1 TeV can be enhanced up to several orders of magnitudes compared to unmagnetized sources. A particular source of enhancement are synchrotron and cascade photons from e^+e^- pairs produced by protons from sources with relatively steep injection spectra proportional to E^-2.6. Such sources should be visible at the same time in ultra-high energy cosmic ray experiments and gamma-ray telescopes.Comment: 4 pages, 3 ps figure

    Methods for searching UHECR anisotropies with the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory, currently under construction, is a detector of Ultra-Hight Energy Cosmic Rays (UHECR), which will allow to study the highest-energy particles with unprecedented statistics . The aim of this paper is to present methods wich are currently under development within the Auger Collaboration to study possible anisotropies of UHECR which are a major key to understand their origin

    Lorentz Violation for Photons and Ultra-High Energy Cosmic Rays

    Full text link
    Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega^2=k^2+xi_n k^2(k/M_Pl)^n with new terms suppressed by a power n of the Planck mass M_Pl. We show that first and second order terms of size xi_1 > 10^(-14) and xi_2 < -10^(-6), respectively, would lead to a photon component in cosmic rays above 10^(19) eV that should already have been detected, if corresponding terms for electrons and positrons are significantly smaller. This suggests that Lorentz invariance breakings suppressed up to second order in the Planck scale are unlikely to be phenomenologically viable for photons.Comment: 4 revtex pages, 3 postscript figures included, version published in PR
    corecore