10 research outputs found

    Added value of the regionally coupled model ROM in the East Asian summer monsoon modeling

    Get PDF
    The performance of the regional atmosphere-ocean coupled model ROM (REMO-OASIS-MPIOM) is compared with its atmospheric component REMO in simulating the East Asian summer monsoon (EASM) during the time period 1980–2012 with the following results being obtained. (1) The REMO model in the standalone configuration with the prescribed sea surface conditions produces stronger low-level westerlies associated with the South Asian summer monsoon, an eastward shift of the western Pacific subtropical high (WPSH) and a wetter lower troposphere, which jointly lead to moisture pathways characterized by stronger westerlies with convergence eastward to the western North Pacific (WNP). As a consequence, the simulated precipitation in REMO is stronger over the ocean and weaker over the East Asian continent than in the observational datasets. (2) Compared with the REMO results, lower sea surface temperatures (SSTs) feature the ROM simulation with enhanced air-sea exchanges from the intensified low-level winds over the subtropical WNP, generating an anomalous low-level anticyclone and hence improving simulations of the low-level westerlies and WPSH. With lower SSTs, ROM produces less evaporation over the ocean, inducing a drier lower troposphere. As a result, the precipitation simulated by ROM is improved over the East Asian continent but with dry biases over the WNP. (3) Both models perform fairly well for the upper level circulation. In general, compared with the standalone REMO model, ROM improves simulations of the circulation associated with the moisture transport in the lower- to mid-troposphere and reproduces the observed EASM characteristics, demonstrating the advantages of the regionally coupled model ROM in regions where air-sea interactions are highly relevant for the East Asian climate

    On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model

    Get PDF
    A number of studies have shown that added value is obtained by increasing the horizontal resolution of a regional climate model to capture additional fine-scale weather processes. However, the mechanisms leading to this added value are different over areas with complicated orographic features, such as the Tibetan Plateau (TP). To determine the role that horizontal resolution plays over the TP, a detailed comparison was made between the results from the REMO regional climate model at resolutions of 25 and 50 km for the period 1980–2007. The model was driven at the lateral boundaries by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis data. The experiments differ only in representation of topography, all other land parameters (e.g., vegetation characteristics, soil texture) are the same. The results show that the high-resolution topography affects the regional air circulation near the ground surface around the edge of the TP, which leads to a redistribution of the transport of atmospheric water vapor, especially over the Brahmaputra and Irrawaddy valleys—the main water vapor paths for the southern TP—increasing the amount of atmospheric water vapor transported onto the TP by about 5. This, in turn, significantly decreases the temperature at 2 m by > 1.5 °C in winter in the high-resolution simulation of the southern TP. The impact of topography on the 2 m temperature over the TP is therefore by influencing the transport of atmospheric water vapor in the main water vapor paths. © 2018 Springer-Verlag GmbH Germany, part of Springer Natur

    Seasonal temperature response over the Indochina Peninsula to a worst-case high-emission forcing: a study with the regionally coupled model ROM

    Get PDF
    Changes of surface air temperature (SAT) over the Indochina Peninsula (ICP) under the Representative Concentration Pathway (RCP) 8.5 scenario are projected for wet and dry seasons in the short-term (2020–2049) and long-term (2070–2099) future of the twenty-first century. A first analysis on projections of the SAT by the state-of-the-art regionally coupled atmosphere-ocean model ROM, including exchanges of momentum, heat, and water fluxes between the atmosphere (Regional Model) and ocean (Max Planck Institute Ocean Model) models, shows the following results: (i) In both seasons, the highest SAT occurs over the southern coastal area while the lowest over the northern mountains. The highest warming magnitudes are located in the northwestern part of the ICP. The regionally averaged SAT over the ICP increases by 2.61 °C in the wet season from short- to long-term future, which is slightly faster than that of 2.50 °C in the dry season. (ii) During the short-term future, largest SAT trends occur over the southeast and northwest ICP in wet and dry seasons, respectively. On regional average, the wet season is characterized by a significant warming rate of 0.22 °C decade−1, while it is non-significant with 0.11 °C decade−1for the dry season. For the long-term future, the rapid warming is strengthened significantly over whole ICP, with trends of 0.51 °C decade−1and 0.42 °C decade−1in wet and dry seasons,respectively. (iii) In the long-term future, more conspicuous warming is noted, especially in the wet season, due to the increased downward longwave radiation. Higher CO2concentrations enhancing the greenhouse effect can be attributed to the water vapor–greenhouse feedback, which, affecting atmospheric humidity and counter radiation, leads to the rising SAT

    Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C

    Get PDF
    THIS ARTICLE PROVIDES detailed information on projected changes in annual precipitation extremes over Southeast Asia under global warming of 2°C based on the multi-model simulations of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment Southeast Asia (SEACLID/CORDEX-SEA). Four indices of extreme precipitation are considered: annual total precipitation (PRCPTOT), consecutive dry days (CDD), frequency of rainfall exceeding 50 mm/day (R50mm), and intensity of extreme precipitation (RX1day). The ensemble mean of 10 simulations showed reasonable performance in simulating observed characteristics of extreme precipitation during the historical period of 1986–2005. The year 2041 was taken as the year when global mean temperature reaches 2°C above pre-industrial levels under unmitigated climate change scenario based on Karmalkar and Bradley (2017). Results indicate that the most prominent changes during the period of 2031–2051 were largely significant. Robust increases in CDD imply impending drier conditions over Indonesia, while increases in RX1day suggest more intense rainfall events over most of Indochina under 2°C global warming scenario. Furthermore, northern Myanmar is projected to experience increases in CDD, R50mm and RX1day, suggesting that the area may face more serious repercussions than other areas in Southeast Asia

    Downstream effect of Hengduan Mountains on East China in the REMO regional climate model

    No full text
    The Hengduan Mountains and Tibetan Plateau possess unique topographical characteristics that serve as an effective blocking of the movement of the westerly wind in the middle and lower troposphere towards East China. This study examines results from a regional climate model (REMO) at the resolutions of 25 and 50 km for the period 1980–2012. The model is run using lateral boundary conditions from ERA-Interim (European Centre for Medium-Range Weather Forecasts interim reanalysis). There are only a few differences between 25 and 50 km in land surface/vegetation characteristics, but the major differences in this region are due to the orography. Results show that the high-resolution simulation performance is poor in winter, when southwesterly wind prevails, whereas it performs well in summer, when the westerly wind is substantially weakened in southern China. In comparison to the ERA-Interim wind field, the high-resolution simulation overestimates the air flow over the Hengduan Mountains near the ground surface, which influences the transport of atmospheric water vapor in the downstream region, i.e., over southern China. Specifically, with the help of the overestimated southwesterly wind, the amount of atmospheric water vapor transported increases considerably perennially by up to 20% in southern China, while it decreases remarkably by more than 5% throughout the year in a large area of Central and North China. These features lead to excessive precipitation and underestimated cloud cover in southern China, which probably causes the overestimated 2-m temperature in southern China. Our study emphasizes that, in such high-resolution-model studies for East Asia, special attention should be paid to the near-surface winds over the Hengduan Mountains

    The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project

    Get PDF
    The performance of seven regional climate models in simulating the radiation and heat fluxes at the surface over South America (SA) is evaluated. Sources of uncertainty and errors are identified. All simulations have been performed in the context of the CLARIS-LPB Project for the period 1990?2008 and are compared with the GEWEX-SRB, CRU, and GLDAS2 dataset and NCEPNOAA reanalysis. Results showed that most of the models overestimate the net surface short-wave radiation over tropical SA and La Plata Basin and underestimate it over oceanic regions. Errors in the short-wave radiation are mainly associated with uncertainties in the representation of surface albedo and cloud fraction. For the net surface long-wave radiation, model biases are diverse. However, the ensemble mean showed a good agreement with the GEWEX-SRB dataset due to the compensation of individual model biases. Errors in the net surface long-wave radiation can be explained, in a large proportion, by errors in cloud fraction. For some particular models, errors in temperature also contribute to errors in the net long-wave radiation. Analysis of the annual cycle of each component of the energy budget indicates that the RCMs reproduce generally well the main characteristics of the short- and long-wave radiations in terms of timing and amplitude. However, a large spread among models over tropical SA is apparent. The annual cycle of the sensible heat flux showed a strong overestimation in comparison with the reanalysis and GLDAS2 dataset. For the latent heat flux, strong differences between the reanalysis and GLDAS2 are calculated particularly over tropical SA.Fil: Pessacg, Natalia Liz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Solman, Silvina Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Samuelsson, Patrick. Rossby Centre; SueciaFil: Sanchez, Enrique. Universidad de Castilla-la Mancha; EspañaFil: Marengo, Jose. Centro de Previsao de Tempo e Estudos Climaticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Li, Laurent. Institut Pierre-Simon Laplace. Laboratoire de Météorologie Dynamique; FranciaFil: Remedio, Armelle Reca C.. Max Planck Institute for Meteorology; AlemaniaFil: Da Rocha, Rosmeri P.. Universidade de São Paulo. Instituto de Astronomia, Geofísica e Ciências Atmosféricas. Departamento de Ciências Atmosféricas; ArgentinaFil: Mourão, Caroline. Centro de Previsao de Tempo e Estudos Climaticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Jacob, Daniela. Climate Service Center; Alemani
    corecore