3,947 research outputs found
Microscopic Enhancement of Heavy-Element Production
Realistic fusion barriers are calculated in a macroscopic-microscopic model
for several soft-fusion heavy-ion reactions leading to heavy and superheavy
elements. The results obtained in such a realistic picture are very different
from those obtained in a purely macroscopic model. For reactions on 208:Pb
targets, shell effects in the entrance channel result in fusion-barrier
energies at the touching point that are only a few MeV higher than the ground
state for compound systems near Z = 110. The entrance-channel fragment-shell
effects remain far inside the touching point, almost to configurations only
slightly more elongated than the ground-state configuration, where the fusion
barrier has risen to about 10 MeV above the ground-state energy. Calculated
single-particle level diagrams show that few level crossings occur until the
peak in the fusion barrier very close to the ground-state shape is reached,
which indicates that dissipation is negligible until very late in the fusion
process. Whereas the fission valley in a macroscopic picture is several tens of
MeV lower in energy than is the fusion valley, we find in the
macroscopic-microscopic picture that the fission valley is only about 5 MeV
lower than the fusion valley for soft-fusion reactions leading to compound
systems near Z = 110. These results show that no significant
``extra-extra-push'' energy is needed to bring the system inside the fission
saddle point and that the typical reaction energies for maximum cross section
in heavy-element synthesis correspond to only a few MeV above the maximum in
the fusion barrier.Comment: 7 pages. LaTeX. Submitted to Zeitschrift fur Physik A. 5 figures not
included here. Complete preprint, including device-independent (dvi),
PostScript, and LaTeX versions of the text, plus PostScript files of the
figures, available at http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/pub/publications/mehe
Broken symmetries and pattern formation in two-frequency forced Faraday waves
We exploit the presence of approximate (broken) symmetries to obtain general
scaling laws governing the process of pattern formation in weakly damped
Faraday waves. Specifically, we consider a two-frequency forcing function and
trace the effects of time translation, time reversal and Hamiltonian structure
for three illustrative examples: hexagons, two-mode superlattices, and two-mode
rhomboids. By means of explicit parameter symmetries, we show how the size of
various three-wave resonant interactions depends on the frequency ratio m:n and
on the relative temporal phase of the two driving terms. These symmetry-based
predictions are verified for numerically calculated coefficients, and help
explain the results of recent experiments.Comment: 4 pages, 6 figure
Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock
© 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology The rapid rise of phenotypic and ecological diversity in independent lake-dwelling groups of cichlids is emblematic of the East African Great Lakes. In this study, we show that similar ecologically based diversification has occurred in pike cichlids (Crenicichla) throughout the Uruguay River drainage of South America. We collected genomic data from nearly 500 ultraconserved element (UCEs) loci and \u3e260 000 base pairs across 33 species, to obtain a phylogenetic hypothesis for the major species groups and to evaluate the relationships and genetic structure among five closely related, endemic, co-occurring species (the Uruguay River species flock; URSF). Additionally, we evaluated ecological divergence of the URSF based on body and lower pharyngeal jaw (LPJ) shape and gut contents. Across the genus, we recovered novel relationships among the species groups. We found strong support for the monophyly of the URSF; however, relationships among these species remain problematic, likely because of the rapid and recent evolution of this clade. Clustered co-ancestry analysis recovered most species as well delimited genetic groups. The URSF species exhibit species-specific body and LPJ shapes associated with specialized trophic roles. Collectively, our results suggest that the URSF consists of incipient species that arose via ecological speciation associated with the exploration of novel trophic roles
Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment
Convection structures in binary fluid mixtures are investigated for positive
Soret coupling in the driving regime where solutal and thermal contributions to
the buoyancy forces compete. Bifurcation properties of stable and unstable
stationary square, roll, and crossroll (CR) structures and the oscillatory
competition between rolls and squares are determined numerically as a function
of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where
the oscillation period grows in integer steps as is found
and elucidated to be an entrainment process.Comment: 7 pages, 4 figure
Isotopic and velocity distributions of Bi produced in charge-pickup reactions of 208Pb at 1 A GeV
Isotopically resolved cross sections and velocity distributions have been
measured in charge-pickup reactions of 1 A GeV 208Pb with proton, deuterium and
titanium target. The total and partial charge-pickup cross sections in the
reactions 208Pb + 1H and 208Pb + 2H are measured to be the same in the limits
of the error bars. A weak increase in the total charge-pickup cross section is
seen in the reaction of 208Pb with the titanium target. The measured velocity
distributions show different contributions - quasi-elastic scattering and
Delta-resonance excitation - to the charge-pickup production. Data on total and
partial charge-pickup cross sections from these three reactions are compared
with other existing data and also with model calculations based on the coupling
of different intra-nuclear cascade codes and an evaporation code.Comment: 20 pages, 12 figures, background information on
http://www-w2k.gsi.de/kschmidt
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
Modeling Supply Networks and Business Cycles as Unstable Transport Phenomena
Physical concepts developed to describe instabilities in traffic flows can be
generalized in a way that allows one to understand the well-known instability
of supply chains (the so-called ``bullwhip effect''). That is, small variations
in the consumption rate can cause large variations in the production rate of
companies generating the requested product. Interestingly, the resulting
oscillations have characteristic frequencies which are considerably lower than
the variations in the consumption rate. This suggests that instabilities of
supply chains may be the reason for the existence of business cycles. At the
same time, we establish some link to queuing theory and between micro- and
macroeconomics.Comment: For related work see http://www.helbing.or
Cross-sections of spallation residues produced in 1.A GeV 208Pb on proton reactions
Spallation residues produced in 1 GeV per nucleon Pb on proton
reactions have been studied using the FRagment Separator facility at GSI.
Isotopic produc- tion cross-sections of elements from Pm to Pb
have been measured down to 0.1 mb with a high accuracy. The recoil kinetic
energies of the produced fragments were also determined. The obtained
cross-sections agree with most of the few existing gamma-spectroscopy data.
Data are compared with different intra nuclear-cascade and evaporation-fission
models. Drastic deviations were found for a standard code used in technical
applications.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Lett.
Revised version May 12, 200
- …