36 research outputs found

    Dichotomy between the transcriptomic landscape of naturally versus accelerated aged murine hearts

    Get PDF
    We investigated the transcriptomic landscape of the murine myocardium along the course of natural aging and in three distinct mouse models of premature aging with established aging-related cardiac dysfunction. Genome-wide total RNA-seq was performed and the expression patterns of protein-coding genes and non-coding RNAs were compared between hearts from naturally aging mice, mice with cardiac-specific deficiency of a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity and mice with reduced telomere length. Our results demonstrate that no dramatic changes are evident in the transcriptomes of naturally senescent murine hearts until two years of age, in contrast to the transcriptome of accelerated aged mice. Additionally, these mice displayed model-specific alterations of the expression levels of protein-coding and non-coding genes with hardly any overlap with age-related signatures. Our data demonstrate very limited similarities between the transcriptomes of all our murine aging models and question their reliability to study human cardiovascular senescence

    The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice

    Get PDF
    More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease

    Latitudinal and temporal distributions of diatom populations in the pelagic waters of the Subantarctic and Polar Frontal Zones of the Southern Ocean and their role in the biological pump

    Get PDF
    The Subantarctic and Polar Frontal zones (SAZ and PFZ) represent a large portion of the total area of the Southern Ocean and serve as a strong sink for atmospheric CO. These regions are central to hypotheses linking particle fluxes and climate change, yet multi-year records of modern flux and the organisms that control it are, for obvious reasons, rare. In this study, we examine two sediment trap records of the flux of diatoms and bulk components collected by two bottom-tethered sediment traps deployed at mesopelagic depths (∼ 1 km) in the SAZ (two-year record) and in the PFZ (six-year record) along the 140° E meridian. These traps provide a direct measure of transfer below winter mixed layer depths, i.e. at depths where effective sequestration from the atmosphere occurs, in contrast to study of processes in the surface ocean. Total mass fluxes were about two-fold higher in the PFZ (24 ± 13 gm yr) than in the SAZ (14 ± 2 gm yr). Bulk chemical composition of the particle fluxes mirrored the composition of the distinct plankton communities of the surface layer, being dominated by carbonate in the SAZ and by biogenic silica in the PFZ. POC export was similar for the annual average at both sites (1.0 ± 0.1 and 0.8 ± 0.4 gm yr, for the PFZ and SAZ, respectively), indicating that the particles in the SAZ were relatively POC rich. Seasonality in the particle export was more pronounced in the PFZ. Peak fluxes occurred during summer in the PFZ and during spring in the SAZ. The strong summer pulses in the PFZ are responsible for a large fraction of the variability in carbon sequestration from the atmosphere in this region. The latitudinal variation of the total diatom flux was found to be in line with the biogenic silica export with an annual flux of 31 ± 5.5 × 10 valves m yr at the PFZ compared to 0.5 ± 0.4 × 10 m yr of the SAZ. Fragilariopsis kerguelensis dominated the annual diatom export at both sites (43 at the SAZ and 59% in the PFZ). POC fluxes displayed a strong positive correlation with the relative contribution of a group of weakly-silicified and bloom-forming species in the PFZ. Several lines of evidence suggest that the development of these species during the growth season facilitates the formation of aggregates and carbon export. Our results confirm previous work suggesting that F. kerguelensis is a major aspect of the decoupling of the carbon and silicon cycles in the high-nutrient low-chlorophyll waters of the Southern Ocean

    NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure.

    No full text
    One major intracellular signaling pathway involved in heart failure employs the phosphatase calcineurin and its downstream transcriptional effector nuclear factor of activated T-cells (NFAT). In vivo evidence for the involvement of NFAT factors in heart failure development is still ill defined. Here we reveal that nfatc2 transcripts outnumber those from other nfat genes in the unstimulated heart by severalfold. Transgenic mice with activated calcineurin in the postnatal myocardium crossbred with nfatc2-null mice revealed a significant abrogation of calcineurin-provoked cardiac growth, indicating that NFATc2 plays an important role downstream of calcineurin and validates the original hypothesis that calcineurin mediates myocyte hypertrophy through activation of NFAT transcription factors. In the absence of NFATc2, a clear protection against the geometrical, functional, and molecular deterioration of the myocardium following biomechanical stress was also evident. In contrast, physiological cardiac enlargement in response to voluntary exercise training was not affected in nfatc2-null mice. Combined, these results reveal a major role for the NFATc2 transcription factor in pathological cardiac remodeling and heart failure

    A New and Simple TRG Multiplex PCR Assay for Assessment of T-cell Clonality: A Comparative Study from the EuroClonality Consortium

    No full text
    Abstract. T-cell Receptor Gamma (TRG) rearrangements are commonly used to detect clonal lymphoproliferations in hematopathology, since they are rearranged in virtually all T lymphocytes and have a relatively limited recombinatorial repertoire, which reduces the risk of false negative results, at the cost of potential false positivity. We developed an initial one-tube, 2-fluorochrome EuroClonality TRG PCR multiplex (TRG-1T-2F) which was compared to the original 2-tube, 2-fluorochrome EuroClonality/BIOMED-2 TRG PCR (TRG-2T-2F) and a commercial Invivoscribe one-tube, one-fluorochrome kit (IVS-1T-1F) on a series of 239 samples, including both T-cell malignancies and reactive cases. This initial assay yielded discrepant results between the 10 participating EuroClonality laboratories when using 2 fluorochromes, leading to adoption of a final single color EuroClonality strategy (TRG-1T-1F). Compared to TRG-2T-2F, both TRG-1T-1F and IVS-1T-1F demonstrated easier interpretation and a lower risk of false positive from minor peaks in dispersed repertoires. Both generate smaller fragments and as such are likely to be better adapted to analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples. Their differential performance was mainly explained by (i) superposition of biallelic rearrangements with IVS-1T-1F, due to more extensive overlapping of the repertoires and (ii) intentional omission of the TRGJP primer in TRG-1T-1F, in order to avoid the potential risk of confusion of consensus TRG V9-JP normal rearrangements with a pathological clone

    Genomic instability in the naturally and prematurely aged myocardium

    Get PDF
    Genomic instability, the unresolved accumulation of DNA variants, is hypothesized as one of the contributors to the natural aging process. We assessed the frequency of unresolved DNA damage reaching the transcriptome of the murine myocardium during the course of natural aging and in hearts from four distinct mouse models of premature aging with established aging-related cardiac dysfunctions. RNA sequencing and variant calling based on total RNA sequencing was compared between hearts from naturally aging mice, mice with cardiomyocyte-specific deficiency of Ercc1, a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity, Tert-deficient mice with reduced telomere length, and a mouse model of human Hutchinson–Gilford progeria syndrome (HGPS). Our results demonstrate that no enrichment in variants is evident in the naturally aging murine hearts until 2 y of age from the HGPS mouse model or mice with reduced telomere lengths. In contrast, a dramatic accumulation of variants was evident in Ercc1 cardiomyocyte-specific knockout mice with deficient DNA repair machinery, in mice with reduced mitochondrial antioxidant capacity, and in the intestine, liver, and lung of naturally aging mice. Our data demonstrate that genomic instability does not evidently contribute to naturally aging of the mouse heart in contrast to other organs and support the contention that the endogenous DNA repair machinery is remarkably active to maintain genomic integrity in cardiac cells throughout life

    Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam.

    No full text
    Indisulam (N-(3-chloro-7-indolyl)-1,4-benzenedisulfonamide, GOAL, E7070) is a novel anti-cancer drug currently in phase II clinical development for the treatment of solid tumors. Phase I dose-escalation studies were conducted comparing four treatment schedules. Neutropenia and thrombocytopenia were dose limiting in all schedules. The aim of this study was to describe the extent and the time course of the hematological toxicity and its possible schedule dependency using a semi-physiological model. Data from 142 patients were analyzed using NONMEM. The semi-physiological model comprised a progenitor blood cell compartment, linked to the central circulation compartment, through 3 transition compartments representing the maturation chain in the bone marrow. Plasma concentrations of the drug were assumed to reduce the proliferation rate in the progenitor compartment according to a linear function. A feedback mechanism was included in the model representing the rebound effect of endogenous growth factors. The model was validated using a posterior predictive check. The model adequately described the extent and time course of neutropenia and thrombocytopenia. The mean transition time (MTT, i.e. maturation time in bone marrow) of neutrophils was increased by 47% in patients who received indisulam as a weekly dose administered for four out of every six weeks. For platelets, MTT was increased by 33% in patients who received this schedule and also in patients who received a continuous 120-h infusion. The validation procedure indicated that the model adequately predicts the nadir value of neutrophils and platelets and the time to reach this nadir. A semi-physiological model was successfully applied to describe the time course and extent of the neutropenia and thrombocytopenia after indisulam administration for four treatment schedules

    Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: an OZ-INTIMATE compilation

    No full text
    The Australian region spans some 60° of latitude and 50° of longitude and displays considerable regional climate variability both today and during the Late Quaternary. A synthesis of marine and terrestrial climate records, combining findings from the Southern Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to a background of changing boundary conditions over the last 35,000 years. Climate drivers include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level rise and ocean and atmospheric circulation changes. Our compilation finds few climatic events that could be used to construct a climate event stratigraphy for the entire region, limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to discern the patterns of change across the continent. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 ± 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Niño-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region.Jessica M. Reeves, Timothy T. Barrows, Timothy J .Cohen, Anthony S. Kiem, Helen C.Bostock, Kathryn E. Fitzsimmons ... et al. (OZ-INTIMATE Members

    MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling

    No full text
    MicroRNAs (miRs) are a class of single-stranded, non-coding RNAs of about 22 nucleotides in length. Increasing evidence implicates miRs in myocardial disease processes. Here we show that miR-199b is a direct calcineurin/NFAT target gene that increases in expression in mouse and human heart failure, and targets the nuclear NFAT kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a (Dyrk1a), constituting a pathogenic feed forward mechanism that affects calcineurin-responsive gene expression. Mutant mice overexpressing miR-199b, or haploinsufficient for Dyrk1a, are sensitized to calcineurin/NFAT signalling or pressure overload and show stress-induced cardiomegaly through reduced Dyrk1a expression. In vivo inhibition of miR-199b by a specific antagomir normalized Dyrk1a expression, reduced nuclear NFAT activity and caused marked inhibition and even reversal of hypertrophy and fibrosis in mouse models of heart failure. Our results reveal that microRNAs affect cardiac cellular signalling and gene expression, and implicate miR-199b as a therapeutic target in heart failure
    corecore