713 research outputs found

    Sunspot areas and tilt angles for solar cycles 7-10

    Full text link
    Extending the knowledge about the properties of solar cycles into the past is essential for understanding the solar dynamo. This paper aims at estimating areas of sunspots observed by Schwabe in 1825-1867 and at calculating the tilt angles of sunspot groups. The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar. There is, of course, no polarity information in the observations. The annually averaged sunspot areas correlate reasonably with sunspot number. We derived an average tilt angle by attempting to exclude unipolar groups with a minimum separation of the two alleged polarities and an outlier rejection method which follows the evolution of each group and detects the moment it turns unipolar at its decay. As a result, the tilt angles, although displaying considerable scatter, place the leading polarity on average 5.85+-0.25 closer to the equator, in good agreement with tilt angles obtained from 20th-century data sets. Sources of uncertainties in the tilt angle determination are discussed and need to be addressed whenever different data sets are combined. The sunspot area and tilt angle data are provided online.Comment: accepted for publication in Astron. & Astrophy

    Ellipticine and benzo(a)pyrene increase their own metabolic activation via modulation of expression and enzymatic activity of cytochromes P450 1A1 and 1A2

    Get PDF
    Two compounds known to covalently bind to DNA after their activation with cytochromes P450 (CYPs), carcinogenic benzo(a)pyrene (BaP) and an antineoplastic agent ellipticine, were investigated for their potential to induce CYP and NADPH:CYP reductase (POR) enzymes in rodent livers, the main target organ for DNA adduct formation. Two animal models were used in the study: (i) rats as animals mimicking the fate of ellipticine in humans and (ii) mice, especially wild-type (WT) and hepatic POR null (HRN™) mouse lines. Ellipticine and BaP induce expression of CYP1A enzymes in livers of experimental models, which leads to increase in their enzymatic activity. In addition, both compounds are capable of generating DNA adducts, predominantly in livers of studied organisms. As determined by 32P postlabelling analysis, levels of ellipticine-derived DNA adducts formed in vivo in the livers of HRN™ mice were reduced (by up to 65%) relative to levels in WT mice, indicating that POR mediated CYP enzyme activity is important for the activation of ellipticine. In contrast to these results, 6.4 fold higher DNA binding of BaP was observed in the livers of HRN™ mice than in WT mice. This finding suggests a detoxication role of CYP1A in BaP metabolism in vivo. In in vitro experiments, DNA adduct formation in calf thymus DNA was up to 25 fold higher in incubations of ellipticine or BaP with microsomes from pretreated animals than with controls. This stimulation effect was attributed to induction of CYP1A1/2 enzymes, which are responsible for oxidative activation of both compounds to the metabolites generating major DNA adducts in vitro. Taken together, these results demonstrate that by inducing CYP1A1/2, ellipticine and BaP modulate their own enzymatic metabolic activation and detoxication, thereby modulating their either pharmacological (ellipticine) and/or genotoxic potential (both compounds)

    Doppler images and the underlying dynamo. The case of AF Leporis

    Get PDF
    The (Zeeman-)Doppler imaging studies of solar-type stars very often reveal large high-latitude spots. This also includes F stars that possess relatively shallow convection zones, indicating that the dynamo operating in these stars differs from the solar dynamo. We aim to determine whether mean-field dynamo models of late-F type dwarf stars can reproduce the surface features recovered in Doppler maps. In particular, we wish to test whether the models can reproduce the high-latitude spots observed on some F dwarfs. The photometric inversions and the surface temperature maps of AF Lep were obtained using the Occamian-approach inversion technique. Low signal-to-noise spectroscopic data were improved by applying the least-squares deconvolution method. The locations of strong magnetic flux in the stellar tachocline as well as the surface fields obtained from mean-field dynamo solutions were compared with the observed surface temperature maps. The photometric record of AF Lep reveals both long- and short-term variability. However, the current data set is too short for cycle-length estimates. From the photometry, we have determined the rotation period of the star to be 0.9660+-0.0023 days. The surface temperature maps show a dominant, but evolving, high-latitude (around +65 degrees) spot. Detailed study of the photometry reveals that sometimes the spot coverage varies only marginally over a long time, and at other times it varies rapidly. Of a suite of dynamo models, the model with a radiative interior rotating as fast as the convection zone at the equator delivered the highest compatibility with the obtained Doppler images.Comment: accepted for publication in Astronomy & Astrophysic

    Width of Sunspot Generating Zone and Reconstruction of Butterfly Diagram

    Full text link
    Based on the extended Greenwich-NOAA/USAF catalogue of sunspot groups it is demonstrated that the parameters describing the latitudinal width of the sunspot generating zone (SGZ) are closely related to the current level of solar activity, and the growth of the activity leads to the expansion of SGZ. The ratio of the sunspot number to the width of SGZ shows saturation at a certain level of the sunspot number, and above this level the increase of the activity takes place mostly due to the expansion of SGZ. It is shown that the mean latitudes of sunspots can be reconstructed from the amplitudes of solar activity. Using the obtained relations and the group sunspot numbers by Hoyt and Schatten (1998), the latitude distribution of sunspot groups ("the Maunder butterfly diagram") for the 18th and the first half of the 19th centuries is reconstructed and compared with historical sunspot observations.Comment: 16 pages, 11 figures; accepted by Solar Physics; the final publication will be available at www.springerlink.co

    Phase Fluctuations in Bose-Einstein Condensates

    Full text link
    We demonstrate the existence of phase fluctuations in elongated Bose-Einstein Condensates (BECs) and study the dependence of those fluctuations on the system parameters. A strong dependence on temperature, atom number, and trapping geometry is observed. Phase fluctuations directly affect the coherence properties of BECs. In particular, we observe instances where the phase coherence length is significantly smaller than the condensate size. Our method of detecting phase fluctuations is based on their transformation into density modulations after ballistic expansion. An analytic theory describing this transformation is developed.Comment: 11 pages, 7 figure

    Space-charge mechanism of aging in ferroelectrics: an exactly solvable two-dimensional model

    Full text link
    A mechanism of point defect migration triggered by local depolarization fields is shown to explain some still inexplicable features of aging in acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged defect transport and electrostatic field relaxation within a two-dimensional domain configuration is treated numerically and analytically. Numerical results are given for the emerging internal bias field of about 1 kV/mm which levels off at dopant concentrations well below 1 mol%; the fact, long ago known experimentally but still not explained. For higher defect concentrations a closed solution of the model equations in the drift approximation as well as an explicit formula for the internal bias field is derived revealing the plausible time, temperature and concentration dependencies of aging. The results are compared to those due to the mechanism of orientational reordering of defect dipoles.Comment: 8 pages, 4 figures. accepted to Physical Review

    Atomic micromotion and geometric forces in a triaxial magnetic trap

    Get PDF
    Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising from the dynamical nature of a time-orbiting-potential (TOP) trap was observed experimentally. The orbital micromotion of the condensate in velocity space at the frequency of the rotating bias field of the TOP was detected by a time-of-flight method. A dependence of the equilibrium position of the atoms on the sense of rotation of the bias field was observed. We have compared our experimental findings with numerical simulations. The nonadiabatic following of the atomic spin in the trap rotating magnetic field produces geometric forces acting on the trapped atoms.Comment: 4 pages, 4 figure

    Optical dipole traps and atomic waveguides based on Bessel light beams

    Full text link
    We theoretically investigate the use of Bessel light beams generated using axicons for creating optical dipole traps for cold atoms and atomic waveguiding. Zeroth-order Bessel beams can be used to produce highly elongated dipole traps allowing for the study of one-dimensional trapped gases and realization of a Tonks gas of impentrable bosons. First-order Bessel beams are shown to be able to produce tight confined atomic waveguides over centimeter distances.Comment: 20 pages, 5 figures, to appear in Phys. Rev.
    • …
    corecore