53 research outputs found

    A polymerase chain reaction/ligase detection reaction fluorescent microsphere assay to determine Plasmodium falciparum MSP-119 haplotypes

    Get PDF
    The merozoite surface protein-1 (MSP-1) is a blood stage antigen currently being tested as a vaccine against Plasmodium falciparum malaria. Determining the MSP-1(19) haplotype(s) present during infection is essential for assessments of MSP-1 vaccine efficacy and studies of protective immunity in human populations. The C-terminal fragment (MSP-1(19)) has four predominant haplotypes based on point mutations resulting in non-synonymous amino acid changes: E-TSR (PNG-MAD20 type), E-KNG (Uganda-PA type), Q-KNG (Wellcome type), and Q-TSR (Indo type). Current techniques using direct DNA sequencing are laborious and expensive. We present an MSP-1(19) allele-specific polymerase chain reaction (PCR)/ligase detection reaction-fluorescent microsphere assay (LDR-FMA) that allows simultaneous detection of the four predominant MSP-1(19) haplotypes with a sensitivity and specificity comparable with other molecular methods and a semi-quantitative determination of haplotype contribution in mixed infections. Application of this method is an inexpensive, accurate, and high-throughput alternative to distinguish the predominant MSP-1(19) haplotypes in epidemiologic studies

    Monocyte dysregulation and systemic inflammation during pediatric falciparum malaria

    Get PDF
    BACKGROUND: Inflammation and monocytes are thought to be important to human malaria pathogenesis. However, the relationship of inflammation and various monocyte functions to acute malaria, recovery from acute malaria, and asymptomatic parasitemia in endemic populations is poorly understood. METHODS: We evaluated plasma cytokine levels, monocyte subsets, monocyte functional responses, and monocyte inflammatory transcriptional profiles of 1- to 10-year-old Kenyan children at the time of presentation with acute uncomplicated malaria and at recovery 6 weeks later; these results were compared with analogous data from asymptomatic children and adults in the same community. RESULTS: Acute malaria was marked by elevated levels of proinflammatory and regulatory cytokines and expansion of the inflammatory intermediate monocyte subset that returned to levels of healthy asymptomatic children 6 weeks later. Monocytes displayed activated phenotypes during acute malaria, with changes in surface expression of markers important to innate and adaptive immunity. Functionally, acute malaria monocytes and monocytes from asymptomatic infected children had impaired phagocytosis of P. falciparum-infected erythrocytes relative to asymptomatic children with no blood-stage infection. Monocytes from both acute malaria and recovery time points displayed strong and equivalent cytokine responsiveness to innate immune agonists that were independent of infection status. Monocyte transcriptional profiles revealed regulated and balanced proinflammatory and antiinflammatory and altered phagocytosis gene expression patterns distinct from malaria-naive monocytes. CONCLUSION: These observations provide insights into monocyte functions and the innate immune response during uncomplicated malaria and suggest that asymptomatic parasitemia in children is not clinically benign. FUNDING: Support for this work was provided by NIH/National Institute of Allergy and Infectious Diseases (R01AI095192-05), the Burroughs Wellcome Fund/American Society of Tropical Medicine and Hygiene, and the Rainbow Babies & Children\u27s Foundation

    Temporal stability of naturally acquired immunity to Merozoite Surface Protein-1 in Kenyan Adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Naturally acquired immunity to blood-stage <it>Plasmodium falciparum </it>infection develops with age and after repeated infections. In order to identify immune surrogates that can inform vaccine trials conducted in malaria endemic populations and to better understand the basis of naturally acquired immunity it is important to appreciate the temporal stability of cellular and humoral immune responses to malaria antigens.</p> <p>Methods</p> <p>Blood samples from 16 adults living in a malaria holoendemic region of western Kenya were obtained at six time points over the course of 9 months. T cell immunity to the 42 kDa C-terminal fragment of Merozoite Surface Protein-1 (MSP-1<sub>42</sub>) was determined by IFN-Ξ³ ELISPOT. Antibodies to the 42 kDa and 19 kDa C-terminal fragments of MSP-1 were determined by serology and by functional assays that measure MSP-1<sub>19 </sub>invasion inhibition antibodies (IIA) to the E-TSR (3D7) allele and growth inhibitory activity (GIA). The haplotype of MSP-1<sub>19 </sub>alleles circulating in the population was determined by PCR. The kappa test of agreement was used to determine stability of immunity over the specified time intervals of 3 weeks, 6 weeks, 6 months, and 9 months.</p> <p>Results</p> <p>MSP-1 IgG antibodies determined by serology were most consistent over time, followed by MSP-1 specific T cell IFN-Ξ³ responses and GIA. MSP-1<sub>19 </sub>IIA showed the least stability over time. However, the level of MSP-1<sub>19 </sub>specific IIA correlated with relatively higher rainfall and higher prevalence of <it>P. falciparum </it>infection with the MSP-1<sub>19 </sub>E-TSR haplotype.</p> <p>Conclusion</p> <p>Variation in the stability of cellular and humoral immune responses to <it>P. falciparum </it>blood stage antigens needs to be considered when interpreting the significance of these measurements as immune endpoints in residents of malaria endemic regions.</p

    The Association of Parasitic Infections in Pregnancy and Maternal and Fetal Anemia: A Cohort Study in Coastal Kenya

    Get PDF
    Background: Relative contribution of these infections on anemia in pregnancy is not certain. While measures to protect pregnant women against malaria have been scaling up, interventions against helminthes have received much less attention. In this study, we determine the relative impact of helminthes and malaria on maternal anemia. Methods: A prospective observational study was conducted in coastal Kenya among a cohort of pregnant women who were recruited at their first antenatal care (ANC) visit and tested for malaria, hookworm, and other parasitic infections and anemia at enrollment. All women enrolled in the study received presumptive treatment with sulfadoxine-pyrimethamine, iron and multi-vitamins and women diagnosed with helminthic infections were treated with albendazole. Women delivering a live, term birth, were also tested for maternal anemia, fetal anemia and presence of infection at delivery. Principal Findings: Of the 706 women studied, at the first ANC visit, 27% had moderate/severe anemia and 71% of women were anemic overall. The infections with highest prevalence were hookworm (24%), urogenital schistosomiasis (17%), trichuria (10%), and malaria (9%). In adjusted and unadjusted analyses, moderate/severe anemia at first ANC visit was associated with the higher intensities of hookworm and P. falciparum microscopy-malaria infections. At delivery, 34% of women had moderate/severe anemia and 18% of infants' cord hemoglobin was consistent with fetal anemia. While none of the maternal infections were significantly associated with fetal anemia, moderate/severe maternal anemia was associated with fetal anemia. Conclusions: More than one quarter of women receiving standard ANC with IPTp for malaria had moderate/severe anemia in pregnancy and high rates of parasitic infection. Thus, addressing the role of co-infections, such as hookworm, as well as under-nutrition, and their contribution to anemia is needed

    Broadly reactive antibodies specific for Plasmodium falciparum MSP-119 are associated with the protection of naturally exposed children against infection

    Get PDF
    BACKGROUND: The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP- 119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it is not known if these variant specific antibodies are associated with haplotype-specific protection from infection. METHODS: Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0) was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly throughout the study. Generalized linear models controlling for age, baseline MSP-119 haplotype and parasite density were used to determine the relationship between infecting P. falciparum MSP-119 haplotype and variant-specific antibodies. RESULTS: A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children had higher parasite densities, greater complexity of infection (\u3e1 haplotype), and more frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at baseline (week 0) had no influence on haplotypes detected over the subsequent 11 weeks among children or adults. Children but not adults with MSP-119 and some MSP-142 variant antibodies detected by serology at baseline had delayed time-to-infection. There was no significant association of variant-specific serology or functional antibodies at baseline with infecting haplotype at baseline or during 11 weeks of follow up among children or adults. CONCLUSIONS: Variant transcending IgG antibodies to MSP-119 are associated with protection from infection in children, but not adults. These data suggest that inclusion of more than one MSP-119 variant may not be required in a malaria blood stage vaccine

    A cohort study of Plasmodium falciparum malaria in pregnancy and associations with uteroplacental blood flow and fetal anthropometrics in Kenya

    Get PDF
    To use ultrasound to explore the impact of malaria in pregnancy on fetal growth and newborn outcomes among a cohort of women enrolled in an intermittent presumptive treatment in pregnancy (IPTp) with sulfadoxine/pyrimethamine (SP) program in coastal Kenya

    Low Levels of Human Antibodies to Gametocyte-Infected Erythrocytes Contrasts the PfEMP1-Dominant Response to Asexual Stages in P. falciparum Malaria.

    Get PDF
    Vaccines that target Plasmodium falciparum gametocytes have the potential to reduce malaria transmission and are thus attractive targets for malaria control. However, very little is known about human immune responses to gametocytes present in human hosts. We evaluated naturally-acquired antibodies to gametocyte-infected erythrocytes (gametocyte-IEs) of different developmental stages compared to other asexual parasite stages among naturally-exposed Kenyan residents. We found that acquired antibodies strongly recognized the surface of mature asexual-IEs, but there was limited reactivity to the surface of gametocyte-IEs of different stages. We used genetically-modified P. falciparum with suppressed expression of PfEMP1, the major surface antigen of asexual-stage IEs, to demonstrate that PfEMP1 is a dominant target of antibodies to asexual-IEs, in contrast to gametocyte-IEs. Antibody reactivity to gametocyte-IEs was similar to asexual-IEs lacking PfEMP1. Significant antibody reactivity to the surface of gametocytes was observed when outside of the host erythrocyte, including recognition of the major gametocyte antigen, Pfs230. This indicates that there is a deficiency of acquired antibodies to gametocyte-IEs despite the acquisition of antibodies to gametocyte antigens and asexual IEs. Our findings suggest that the acquisition of substantial immunity to the surface of gametocyte-IEs is limited, which may facilitate immune evasion to enable malaria transmission even in the face of substantial host immunity to malaria. Further studies are needed to understand the basis for the limited acquisition of antibodies to gametocytes and whether vaccine strategies can generate substantial immunity

    Antibody-Mediated Growth Inhibition of Plasmodium falciparum: Relationship to Age and Protection from Parasitemia in Kenyan Children and Adults

    Get PDF
    BACKGROUND: Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. METHODS: A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. RESULTS: Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children \u3c4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012-2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. CONCLUSION: Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age

    Interaction between maternally derived antibodies and heterogeneity in exposure combined to determine time-to-first Plasmodium falciparum infection in Kenyan infants

    No full text
    Abstract Background Studies of the association between the level of anti-malarial antibody and protection from malaria infection can yield conflicting results if they fail to take into account differences in the malaria transmission rate. This can occur because high malaria exposure may drive high antibody responses, leading to an apparent positive association between immune response and infection rate. The neonatal period provides a unique window to study the protective effects of antibodies, because waning maternally-derived antibodies lead to different levels of protection with time. Methods This study uses data from two well-defined infant cohorts in Western Kenya with different burdens of malaria transmission. Survival models were used to assess how the magnitude of maternally derived malaria-specific IgG antibody (to 24 malaria antigens measured using Luminex beads) affected the time-to-first Plasmodium falciparum infection (detected by PCR). In addition, mathematical models were used to assess how the frequency of malaria infection varied between the cohorts with different exposure levels. Results Despite differences in underlying malaria incidence in the two regions, there was no difference in time-to-first malaria infection between the cohorts. However, there was a significant period of protection observed in children with high initial MSP1 (42Β kDa fragment)-specific antibody levels, but this protection was not observed in children with low antibody levels. Children from the high transmission cohort had both longer initial periods of protection from malaria (attributable to higher initial antibody levels), but more rapid time-to-first-infection once malaria specific maternal antibodies declined below protective levels (attributable to higher exposure rates). Conclusion This study demonstrates the complex interaction between passive (maternally-derived) immunity and the degree of malaria exposure in infants. Children from regions of high malaria transmission had higher levels of maternally-derived antibodies in early life, which led to a significant protection for several months. However, once this immunity waned, the underlying higher frequency of infection was revealed. A better understanding of the interaction between malaria exposure, immunity, and transmission risk will assist in identifying protective immune responses in P. falciparum infection
    • …
    corecore