109 research outputs found

    A Hierarchical Hybrid Architecture for Mission-Oriented Robot Control

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-03413-3_26In this work is presented a general architecture for a multi physical agent network system based on the coordination and the behaviour management. The system is organised in a hierarchical structure where are distinguished the individual agent actions and the collective ones linked to the whole agent network. Individual actions are also organised in a hybrid layered system that take advantages from reactive and deliberative control. Sensing system is involved as well in the behaviour architecture improving the information acquisition performance.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the CICYT project Mission Based Control (COBAMI): DPI2011-28507-C02-02, under coordinated project High Integrity Partitioned Embedded Systems (Hi-PartES): TIN2011-28567-C03-03, and under the collaborative research project supported by the European Union MultiPARTES Project: FP7-ICT 287702. 2011-14.Muñoz Alcobendas, M.; Munera Sánchez, E.; Blanes Noguera, F.; Simó Ten, JE. (2013). A Hierarchical Hybrid Architecture for Mission-Oriented Robot Control. En ROBOT2013: First Iberian Robotics Conference: Advances in Robotics, Vol. 1. Springer. 363-380. https://doi.org/10.1007/978-3-319-03413-3_26S363380Aragues, R.: Consistent data association in multi-robot systems with limited communications. Robotics: Science and Systems, 97–104 (2010)Aragues, R., Cortes, J., Sagues, C.: Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Transactions on Robotics (2012)Arkin, R.C.: Motor schema based mobile robot navigation. The International Journal of Robotics Research 8(4), 92–112 (1989)Asama, H., Habib, M.K., Endo, I., Ozaki, K., Matsumoto, A., Ishida, Y.: Functional distribution among multiple mobile robots in an autonomous and decentralized robot system. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation. IEEE (1991)Benet, G., Blanes, F., Martínez, M., Simó, J.: A multisensor robot distributed architecture. In: IFAC Conference INCOM 1998 (1998)Brooks, R.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)Canas, J.M., Matellán, V.: Dynamic schema hierarchies for an autonomous robot. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 903–912. Springer, Heidelberg (2002)Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation 17(2), 125–137 (2001)Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: Efficient position estimation for mobile robots. American Association for Artificial Intelligence, 343–349 (1999)Hu, J., Xie, L., Xu, J.: Vision-based multi-agent cooperative target search. In: Control Automation Robotics & Vision (ICARCV), pp. 895–900 (2012)Huq, R., Mann, G.K.I., Gosine, R.G.: Behavior-modulation technique in mobile robotics using fuzzy discrete event system. IEEE Transactions on Robotics 22(5), 903–916 (2006)Jayasiri, A., Mann, G., Gosine, R.G.: Mobile robot behavior coordination using supervisory control of fuzzy discrete event systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 690–695 (2009)Jayasiri, A., Mann, G.K.I., Gosine, R.G.: Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(5), 1224–1238 (2011)Koenig, N., Howard, A.: Gazebo-3d multiple robot simulator with dynamics. Technical report (2006)Lin, F., Ying, H.: Modeling and control of fuzzy discrete event systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 32(4), 408–415 (2002)Madden, J.D.: Multi-robot system based on model of wolf hunting behavior to emulate wolf and elk interactions. In: 2010 IEEE International Conference on Robotics and Biomimetics, ROBIO, pp. 1043–1050 (2010)Mataric, M.J.: Interaction and intelligent behavior. Technical report, DTIC Document (1994)Olivera, V.M., Molina, J.M., Sommaruga, L., et al.: Fuzzy cooperation of autonomous robots. In: Fourth International System on Intelligent Robotics Systems, Lisboa, Portugal (1996)McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A deliberative architecture for auv control. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1049–1054. IEEE (2008)Munera, E., Muñoz, M., Simó, J., Blanes, F.: Humanoid Robot Self-Location In SPL League. In: Comité Español de Automática (CEA), XXXIII Jornadas de Automatica, 797–804 (2012)Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the behavior-based control architecture iB2C. Robotics and Autonomous Systems 58(1), 46–67 (2010)Qiu, D.: Supervisory control of fuzzy discrete event systems: a formal approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(1), 72–88 (2005)Aladebaran Robotics. NAO Software Documentation 1.12. Technical report (2012)St-Pierre, M., Gingras, D.: Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 831–835 (2004)Stoytchev, A., Arkin, R.C.: Combining deliberation, reactivity, and motivation in the context of a behavior-based robot architecture. In: Proceedings of the 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 290–295 (2001)Nicolau, V., Muñoz, M., Simó, J.: KertrolBot Platform. SiDiReLi: Distributed System with Limited Resources. Technical report, Institute of Control Systems and Industrial Computing - Polytechnic University of Valencia, Valencia, Spain (2011

    Silhouette-based method for object classification and human action recognition in video

    Get PDF
    In this paper we present an instance based machine learning algorithm and system for real-time object classification and human action recognition which can help to build intelligent surveillance systems. The proposed method makes use of object silhouettes to classify objects and actions of humans present in a scene monitored by a stationary camera. An adaptive background subtracttion model is used for object segmentation. Template matching based supervised learning method is adopted to classify objects into classes like human, human group and vehicle; and human actions into predefined classes like walking, boxing and kicking by making use of object silhouettes. © Springer-Verlag Berlin Heidelberg 2006

    A Distributed Scalable Approach to Formation Control in Multi-Robot Systems

    Get PDF
    A new algorithm for the control of formations of mobile robots is presented. Formations with a triangular lattice structure are created using distributed control rules, using only local information on each robot. The overall direction of movement of the formation is not pre-established but rather results from local interactions, giving all the robots a common, self-organized heading. Experiments were done to test the algorithm, yielding results in which robots behaved as expected, moving at a reasonable speed and maintaining the desired distances among themselves. Up to seven robots were used in real experiments and up to forty in simulation

    Multi-Agent Cooperation for Advanced Teleoperation of an Industrial Forklift in Real-Time Environment

    No full text

    Robot-Animal Interaction: Perception and Behavior of Insbot

    No full text

    Behavior-based formation control for multirobot teams

    No full text

    Hard- and Software Architecture of a Small Autonomous Underwater Vehicle for Environmental Monitoring Tasks

    No full text

    Stable Aspects in Robot Software Development

    No full text
    The paper investigates the concept of software “stability” applied to robot systems. We define “stable” a family of systems modelled, designed and implemented so that specific applications of the family may be developed re-using, adapting and specializing knowledge, architecture and existing components. During the last few years, many ideas and technologies of software engineering (e.g. modularity, OO development and design patterns) were introduced in the development of robotic systems to improve the “stability” property. All these ideas and technologies are important. Nevertheless, they model robotic systems along a unique direction: the functional decomposition of parts. Unfortunately, there are concerns of robotic systems that relate to the systems as a whole hence crosscutting their modular structure. The Aspect Oriented Software Development is a recently emerged approach for modelling, designing and encapsulating the above-mentioned crosscutting concerns (aspects). We contend that stability must be based on a careful domain analysis and on a multidimensional modelling of different and recurring aspects of robot systems
    • …
    corecore