24 research outputs found

    Nanosecond Dynamics of Single-Molecule Fluorescence Resonance Energy Transfer

    Full text link
    Motivated by recent experiments on photon statistics from individual dye pairs planted on biomolecules and coupled by fluorescence resonance energy transfer (FRET), we show here that the FRET dynamics can be modelled by Gaussian random processes with colored noise. Using Monte-Carlo numerical simulations, the photon intensity correlations from the FRET pairs are calculated, and are turned out to be very close to those observed in experiment. The proposed stochastic description of FRET is consistent with existing theories for microscopic dynamics of the biomolecule that carries the FRET coupled dye pairs.Comment: 8 pages, 1 figure. accepted to J.Phys.Chem.

    Nonclassical Imaging for a quantum search of trapped ions

    Get PDF
    We discuss a simple search problem which can be pursued with different methods, either on a classical or on a quantum basis. The system is represented by a chain of trapped ions. The ion to be searched is a member of that chain, consists, however, of an isotopic species different to the others. It is shown that the classical imaging may lead as fast to the final result as the quantum imaging. However, for the discussed case the quantum method gives more flexibility and higher precision when the number of ions considered in the chain is increasing. In addition, interferences are observable even when the distances between the ions is smaller than half a wavelength of the incident light.Comment: 5 pages, 5 figure

    Single microwave photon detection in the micromaser

    Full text link
    High efficiency single photon detection is an interesting problem for many areas of physics, including low temperature measurement, quantum information science and particle physics. For optical photons, there are many examples of devices capable of detecting single photons with high efficiency. However reliable single photon detection of microwaves is very difficult, principally due to their low energy. In this paper we present the theory of a cascade amplifier operating in the microwave regime that has an optimal quantum efficiency of 93%. The device uses a microwave photon to trigger the stimulated emission of a sequence of atoms where the energy transition is readily detectable. A detailed description of the detector's operation and some discussion of the potential limitations of the detector are presented.Comment: 8 pages, 5 figure

    Entanglement of bosonic modes of nonplanar molecules

    Full text link
    Entanglement of bosonic modes of material oscillators is studied in the context of two bilinearly coupled, nonlinear oscillators. These oscillators are realizable in the vibrational-cum-bending motions of C-H bonds in dihalomethanes. The bilinear coupling gives rise to invariant subspaces in the Hilbert space of the two oscillators. The number of separable states in any invariant subspace is one more than the dimension of the space. The dynamics of the oscillators when the initial state belongs to an invariant subspace is studied. In particular, the dynamics of the system when the initial state is such that the total energy is concentrated in one of the modes is studied and compared with the evolution of the system when the initial state is such wherein the modes share the total energy. The dynamics of quantities such as entropy, mean of number of quanta in the two modes and variances in the quadratures of the two modes are studied. Possibility of generating maximally entangled states is indicated.Comment: 21 pages, 6 figure

    Multi-dimensional trio coherent states

    Full text link
    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K=2 in the quantized vibronic motion of a trapped ion.Comment: 17 pages, 12 figures, accepted for publication in J. Phys. A: Math. Ge
    corecore