High efficiency single photon detection is an interesting problem for many
areas of physics, including low temperature measurement, quantum information
science and particle physics. For optical photons, there are many examples of
devices capable of detecting single photons with high efficiency. However
reliable single photon detection of microwaves is very difficult, principally
due to their low energy. In this paper we present the theory of a cascade
amplifier operating in the microwave regime that has an optimal quantum
efficiency of 93%. The device uses a microwave photon to trigger the stimulated
emission of a sequence of atoms where the energy transition is readily
detectable. A detailed description of the detector's operation and some
discussion of the potential limitations of the detector are presented.Comment: 8 pages, 5 figure