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Nonclassical imaging for a quantum search of trapped ions
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We discuss a simple search problem which can be pursued with different methods, either on a
classical or on a quantum basis. The system is represented by a chain of trapped ions. The ion
to be searched is a member of that chain, consists, however, of an isotopic species different to the
others. It is shown that the classical imaging may lead as fast to the final result as the quantum
imaging. However, for the discussed case the quantum method gives more flexibility and higher
precision when the number of ions considered in the chain is increasing. In addition, interferences
are observable even when the distances between the ions is smaller than half a wavelength of the
incident light.

PACS numbers: 42.50.Dv, 42.50.Ar, 03.67.-a, 03.65.Ta

Quantum search algorithms [1] enable us to determine
an object from a black box with N elements by a num-
ber of measurements which is of the order of

√
N . A

quantum search thus provides a polynomial speed-up in
comparison with any known classical algorithm. Several
methods have been proposed for implementing a quan-
tum search [2]. In this letter we discuss a very simple
example where the search can be performed in the same
system either on a classical or a quantum basis. Such a
situation is useful for illustrating the particular aspects
of a quantum search with respect to a classical search.
We recall that fluorescence imaging, i.e., measurement of
the mean intensity of radiation scattered by atoms upon
excitation, provides information about the density pro-
file. In fact, this is a common method used to image,
for example, trapped ions or a Bose-Einstein condensate
[3, 4, 5]. We could, however, do more than just image
the sources of fluorescence, e.g. by determining the spec-
trum of the scattered light. In this case, in addition to
the position the motional state of the atoms is accessible.
Instead of imaging the particles individually on a detec-
tor, one could also observe the fluorescence in the far field
or Fourier plane of a lens [6]. In this case, the intensity
distribution corresponds to the interference pattern de-
scribed by the first order correlation function of the fluo-
rescence light. It results from the contribution of all par-
ticles at once, and their relative position can be deduced
from the interference pattern. The intensity distribution
thus contains more information than the direct imaging
of the ions [7]. A further step in sophistication would be
to observe the scattered light using two detectors and to
measure the second order correlation function. This cor-
responds to a nonclassical imaging technique where the
associated spatial distribution is determined by the dif-
ferent paths the photons can take when reaching the two
detectors; the corresponding interference pattern again
relies on the contribution of all scatterers simultaneously
but for certain excitation angles is purely due to quan-
tum interferences [8, 9]. In this type of experiment only

the coincidence events at the two detectors are recorded.
As the paths of the photons contributing to these coinci-
dences change with the relative position of the detectors
and/or the scatterers, the observed interference patterns
again allow the positions of the individual particles to be
retraced. However, owing to the larger variability of the
parameters involved, a much richer interference structure
is obtained. To illustrate this in more detail we consider a
particular example, viz. a linear chain of ions of the same
atomic species. In order to set up a search procedure we
assume that one of the ions belongs to an isotopic species
different to the others. By calculating the spatial pho-
ton - photon correlations we then show how the second
order correlations can be used to reveal information on
the position of the off-resonant, non-radiating isotope in
the chain. We will also demonstrate why this informa-
tion is more extensive than that obtained from the usual
fluorescence imaging techniques or first order correlation
function. In particular, it will be shown that the second
order correlation function is able to provide data in pa-
rameter regions where the first order correlation function
is not able to provide any information.

Let us consider a chain of ions with an energy level
scheme as shown in Fig. 1a. The transition |g〉 → |e〉
is used for exciting the system, whereas the transition
|e〉 → |f〉 serves for fluorescence detection. The excita-
tion could be performed, by for example, a short pulse of
radiation. The most basic search protocol would consist
in resonantly exciting each ion one by one on the |g〉 → |e〉
transition using a focused laser beam and observing the
fluorescence scattered by the ion on the |e〉 → |f〉 transi-
tion. With the isotope being off-resonant and remaining
dark upon excitation, it will take at most N − 1 steps
to localize the isotope, i.e. in the mean N/2 trials. One
could next observe the fluorescence intensity in the far
field or in the Fourier plane of a lens, i.e. without imag-
ing the ions. The corresponding interference pattern -
produced by the simultaneous superposition of the elec-
tromagnetic fields of all scatterers - can be used to extract
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information about the position of the isotope. To be ex-
plicit, let us calculate the far-field intensity produced by
a chain of ions at some distance r. The positive frequency
part of the field amplitude can be written as (see [10])

~E(+)(~r1, t) = ~E
(+)
0 (~r1, t) (1)

− k2eikr

r

∑

j

e−ik~n1
~Rj~n1 × (~n1 × ~dfe)A

(j)
fe ,

where ~n1 stands for a unit vector in the direction of the
detector position, ~r1 = ~n1r, k = ω0/c. ω0, ~dfe and

A
(j)
fe = |f〉jj〈e| are, respectively, the transition frequency,

dipole matrix element and the dipole operator of ion j for
the transition |e〉 → |f〉 and the sum is over all ion posi-

tions ~Rj in the chain. The far-field intensity is thus deter-

mined by the first order correlation function G(1)(~r1) =

〈A†(~r1)A(~r1)〉, where A(~r1) =
∑

j A
(j)
fe e−ik~n1

~Rj . In the

case of uncorrelated ions (〈A(j)
ef A

(i)
fe〉 = 〈A(j)

ef 〉〈A
(i)
fe 〉),

G(1)(~r1) can be simplified to [10]

G(1)(~r1) =
∑

j

〈A(j)
ee 〉 +

∑

j 6=i

〈A(j)
ef 〉〈A(i)

fe〉eik~n1(~Ri−~Rj). (2)

According to (2), the information on the spatial struc-
ture of the ion chain is contained in G(1)(~r1) as long as

〈A(j)
ef 〉 6= 0. This is the case as long as, for example,

no π-pulse is used for the excitation. The information
about the localization of a non-radiating particle is
also contained in (2), as G(1)(~r1) will look different for
different positions of the isotope. This will be discussed
in more detail below. Note, however, that a result
similar to (2) is obtained also in the case of classical
dipoles or classical antennas, i.e. in the case of classical
light sources [7].

As mentioned in the introduction, we could, however,
do more than just measure the far-field intensity, e.g. by
examining the quantum features of the emitted radiation.
For that purpose let us study the spatial photon - pho-
ton correlations produced by the chain of ions by using
two photodetectors (see Fig. 1b). The photon - photon
correlations are determined by the expression (see [10])

〈 ~E(−)(~r1, t) ~E(−)(~r2, t) ~E(+)(~r2, t) ~E(+)(~r1, t)〉, (3)

where ~r2 = ~n2r defines the position of the second de-

tector and ~E(−)(~ri, t) denotes the complex conjugate of
~E(+)(~ri, t), i = 1, 2. As can be seen from (3), the spatial
photon - photon correlations are determined in terms of
the atomic/ionic operators through

G(2)(~r1, ~r2) = 〈A†(~r1)A
†(~r2)A(~r2)A(~r1)〉. (4)

In order to demonstrate how the information on the spa-
tial structure of the chain is contained in the quantity
G(2)(~r1, ~r2), let us first examine the case of two ions. If

FIG. 1: (a) Level scheme considered for the trapped ions:
the ions are excited on the |g〉 → |e〉 transition, whereas the
|e〉 → |f〉 transition is used for fluorescence detection; (b) an

incident π-pulse of a wave with wave vector ~kL excites the
linearly trapped ions into their upper level |e〉. The fluores-
cence is then registered in the far field by two detectors at ~ri,
i = 1, 2 (|~r1| = |~r2| = r).

the ions are initially prepared in the state |e〉, we find
(see [9])

G(2)(~r1, ~r2) = B(1 + cos(k(~n2 − ~n1)(~RA − ~RB))), (5)

where B is a constant. Obviously, the information on the
location of the two ions is contained in the nonclassical
[9] interference pattern G(2)(~r1, ~r2) via the atomic posi-

tion variables ~RA and ~RB. Let us consider next a chain
of N ions of which one is an off-resonant, non-radiating
isotope. The explicit calculation in case of π-excitation
leads to the following result:

G
(2)
p,N (~r1, ~r2) =

∑

i,j 6=p(i<j)

|γij(~r1, ~r2)|2, (6)

where p = 1, N stands for the position of the iso-
tope, i = 1, N − 1 and j = 2, N and γlm(~r1, ~r2) =

αl(~r1)βm(~r2) + αm(~r1)βl(~r2) with αl(~r1) = eik~n1
~Rl and

βm(~r2) = eik~n2
~Rm (l, m = 1, N). The solution (6) can

easily be interpreted as the sum of terms associated with
all possible optical path differences between the photons
when scattered by two different ions and recorded by the
two detectors, on the assumption that the isotope at p
does not scatter at all. Equation (6) becomes even more
transparent for equally spaced ions. In the case of four
ions, for example, the system after initial excitation by
a π-pulse will be in one of the pure states |feee〉, |efee〉,
|eefe〉 or |eeef〉. In this case we get |γ12(~r1, ~r2)|2 ≡
|γ23(~r1, ~r2)|2 ≡ |γ34(~r1, ~r2)|2 = 2 + 2c1(~r1, ~r2) and
|γ13(~r1, ~r2)|2 ≡ |γ24(~r1, ~r2)|2 = 2 + 2c2(~r1, ~r2), where

cm(~r1, ~r2) = cos[k(~n1 − ~n2)(~R1 − ~Rm+1)], so that

G
(2)
p,4(~r1, ~r2) = (7)

= 2(δp,1 + δp,4)(3 + 2c1(~r1, ~r2) + c2(~r1, ~r2))

+2(δp,2 + δp,3)(3 + c1(~r1, ~r2) + c2(~r1, ~r2) + c3(~r1, ~r2)).

where δp,q is the Kronecker symbol. According to (7),
the information about the isotope position can be ex-

tracted from G
(2)
p,4(~r1, ~r2) due to the unique distribution

of prefactors (or Fourier coefficients) cj for the differ-
ent isotope localizations. From (7) it is seen, however,
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FIG. 2: 3-D plot of the second order correlation function

G
(2)
p,4(~r1, ~r2) versus the two detector positions φi(~ri), i = 1, 2,

for N = 4 ions, with the off-resonant, non-radiating isotope
placed in (a) the first (or fourth) position and (b) the second
(or third) position of the chain. The distance between neigh-
boring ions is d = 5.75λ, wavelength of the incident light is
λ = 194nm and a π pulse is used for the excitation.

FIG. 3: Interference patterns for N = 4 ions. Blue and green
curves correspond to the first (or fourth) and second (or third)
ion being the isotope, respectively. Parameters are the same

as in Fig. 2. (a) Classical interference pattern G
(1)
p,4(~r1) (or

second order correlation function G
(2)
p,4(~r1, ~r2) where the sec-

ond detector is at φ2(~r2) = 0). (b) Nonclassical interference

pattern G
(2)
p,4(~r1, ~r2); the two detectors are slightly separated

with ||φ1| − |φ2|| = 1/π.

that the outcome for the isotope positions p = 1 (2) is
identical to the outcome for p = 4 (3). This means that
for equally spaced ions an additional measurement would
be required to determine whether the isotope is on the
left or right hand side with respect to the middle of the
chain. A similar argument holds for the general outcome
(6): for arbitrarily spaced ions there is a unique interfer-
ence pattern for each isotope position p since the γij will
in general be different for different i, j, so that there is a
unique combination of γij for each isotope position p. By
measuring the spatial dependence of the photon-photon

FIG. 4: Interference patterns for N = 4 ions with ion dis-
tance λ/2. (a) Red curve: nonclassical interference pattern

G
(2)
1,4(~r1, ~r2) with φ1(~r1) = φ2(~r2) (see red line in (b)), black

curve: classical interference pattern G
(1)
1,4(~r1) (G

(2)
1,4(~r1, ~r2)

with φ2(~r2) = 0; see black line in (b)).

FIG. 5: Interference patterns for N = 9 ions. Black, yellow,
green, blue and red curves correspond to 1st (or 9th), 2nd (or
8th), 3rd (or 7th), 4th (or 6th) and 5th ion being the isotope,
respectively. Parameters are the same as in Fig. 2. (a) Non-

classical interference pattern G
(2)
p,9(~r1, ~r2); the two detectors

have a constant separation ||φ1| − |φ2|| = 1/π. Dashed lines
correspond to detectors’ positions being chosen in such a way
that |sin|φ1| − sin|φ2|| = 0.378. (b) Classical interference

pattern G
(1)
p,9(~r1).

correlation function one could thus clearly distinguish the
isotope position p from any other position p′. Note in
particular that the additional degree of freedom given
by ~r2 due to the use of two detectors increases the pa-
rameter space available. This is exceedingly useful when
the information from the first order correlation function
G

(1)
p,N (~r1) is difficult to extract. This is the case for, for

example, a large number of ions and/or a small ion spac-
ing. There is in addition the particular situation where

G
(1)
p,N (~r1) contains no information at all, as is the case,

for example, for a π-pulse excitation. In this case the

contrast of the interference pattern of G
(1)
p,N (~r1) vanishes,

whereas that of G
(2)
p,N (~r1, ~r2) can still remain maximal
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[8, 9]. In Fig. 2, we show the behavior in case of four

equally spaced ions for G
(2)
p,4(~r1, ~r2) for p = 1 (or 4) and

p = 2 (or 3) as a function of φi(~ri) = arctan(ri,y/ri,x),
i = 1, 2. For the same excitation angle as used in this

figure (i.e. π-pulse excitation) G
(1)
p,4(~r1) would correspond

to a constant, independently of φ1(~r1) and independent
of the isotope position p. For a π/2-pulse excitation on

the |f〉 → |e〉 transition, however, G
(1)
p,4(~r1) would - apart

from a prefactor - show an interference pattern similar

to G
(2)
p,4(~r1, ~r2) for π-pulse excitation and φ2(~r2) = 0 (see

horizontal lines in Fig. 2). More precisely, we obtain

G
(1)
p,4(~r1) = 1/2(δp,1 + δp,4)(3 + 2c1(~r1) + c2(~r1)) (8)

+ 1/2(δp,2 + δp,3)(3 + c1(~r1) + c2(~r1) + c3(~r1)).

where cm(~r1) = cos[k~n1(~R1 − ~Rm+1)] and p = 1, 4. The
result (up to a prefactor) is shown in Fig. 3a. Yet, it is

here that the additional degree of freedom of G
(2)
p,4(~r1, ~r2)

with respect to G
(1)
p,4(~r1) becomes important: the ad-

ditional parameter ~r2 increases the available parameter
space and in this manner allows a more flexible and pre-
cise search of the isotope. To show that, we plot in Fig.

3b G
(2)
p,4(~r1, ~r2) for p = 1 (or 4) and p = 2 (or 3), and with

~r1 and ~r2 such that ||φ1(~r1)| − |φ2(~r2)|| = 1/π. The lat-
ter condition stands for a fixed distance between the two
detectors and corresponds in Fig. 2 to a straight line in
the (φ1(~r1), φ2(~r2))-plane (see tilted lines in Fig. 2). As
is seen from Fig. 3b, the constraints for the angular re-
solving power are much more relaxed in comparison with

that needed for G
(1)
p,4(~r1) (Fig. 3a).

The spatial second order correlation function also al-
lows the isotope position to be determined in cases where
the ions are separated by only λ/2 so that they cannot
be individually resolved. This can be demonstrated by

analyzing G
(2)
1,4(~r1, ~r2) for equally spaced ions with ion

separation d = λ/2 (Fig. 4). If the detector positions
are chosen such that φ1(~r1) = φ2(~r2) - corresponding in
the (φ1(~r1), φ2(~r2))-plane to a straight line with slope 1

- we resolve for G
(2)
1,4(~r1, ~r2) a central maximum plus two

side maxima in the central region −π/4 ≤ φ1(~r1) ≤ π/4,

whereas for G
(1)
1,4(~r1) only the central maximum is ob-

tained (Fig. 4a). However, it is from the position and
amplitude of the side maxima that the information about
the isotope position p is derived, whereas the central

maximum in this regard contains no information.

Let us finally consider nine equally spaced ions in the
trap one of which is an isotope. There are 5 differ-
ent positions for the isotope which can be distinguished

from G
(2)
p,9(~r1, ~r2) (see above). These five different pos-

sibilities are plotted in Fig. 5a on the assumption that
||φ1(~r1)| − |φ2(~r2)|| = 1/π and a π-pulse is used for ex-
citation. It can be clearly seen from the figure that the
requirement for the angular resolving power is far less

demanding in comparison with Fig. 5b, where G
(1)
p,9(~r1)

(apart from a prefactor) is plotted for a π/2-pulse excita-
tion on the |f〉 → |e〉 transition. For a relative position of
the two detectors such that || sin φ1(~r1)| − | sinφ2(~r2)|| =

0.378, one even obtains for G
(2)
p,9(~r1, ~r2) constant values,

with amplitudes which depend on the isotope position
p, but are independent from φ1(~r1). These values are
depicted in Fig. 5a by dashed lines. However, due to
the nonlinear dependence of the two detector positions,
this situation might be more difficult to implement ex-
perimentally. Nevertheless, such as special angular in-
dependent case could play an important role when one
would be interested to normalize the correlation function,
e.g. for the purpose of a better comparison between the
different isotope positions.

In conclusion, it has been shown in a simple search
problem using a chain of trapped ions that the search
process can be strongly improved when interferences are
observed than employing a one by one search. The speed
up of the search process results from the fact that the in-
terference patterns are produced by the light of all emit-
ting ions of the chain at once so that there is a simul-
taneous contribution of all scatterers to the signal. This
superposition of the signal is apparently sufficient for the
speed up and no entanglement between the ions nor other
quantum phenomena are required [7]. However, quan-
tum interferences allow to increase the parameter space
available and in particular improve the precision when
a larger number of ions is involved, since they relax the
demands for the spatial resolving power of the detectors.
Moreover, in the case of quantum interferences an inter-
ference pattern is obtained even at ion distances smaller
than λ/2 which is the ultimate limit for a classical inter-
ference experiment.
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