78 research outputs found

    Pre-scission neutron multiplicity associated with the dynamical process in superheavy mass region

    Get PDF
    The fusion-fission process accompanied by neutron emission is studied in the superheavy-mass region on the basis of the fluctuation-dissipation model combined with a statistical model. The calculation of the trajectory or the shape evolution in the deformation space of the nucleus with neutron emission is performed. Each process (quasi-fission, fusion-fission, and deep quasi-fission processes) has a characteristic travelling time from the point of contact of colliding nuclei to the scission point. These dynamical aspects of the whole process are discussed in terms of the pre-scission neutron multiplicity, which depends on the time spent on each process. We have presented the details of the characteristics of our model calculation in the reactions 48^{48}Ca+208^{208}Pb and 48^{48}Ca+244^{244}Pu, and shown how the structure of the distribution of pre-scission neutron multiplicity depends on the incident energy.Comment: 19 pages, 12 figures, Accepted for publication in J. Phys.

    Fusion hindrance and roles of shell effects in superheavy mass region

    Get PDF
    We present the first attempt of systematically investigating the effects of shell correction energy for a dynamical process, which includes fusion, fusion-fission and quasi-fission processes. In the superheavy mass region, for the fusion process, shell correction energy plays a very important role and enhances the fusion probability when the colliding partner has a strong shell structure. By analyzing the trajectory in three-dimensional coordinate space with the Langevin equation, we reveal the mechanism of the enhancement of the fusion probability caused by `cold fusion valleys'. The temperature dependence of shell correction energy is considered.Comment: 31 pages, 23 figures, Accepted for publication in Nuclear Physics

    Analysis of fusion-fission dynamics by pre-scission neutron emission in 58^{58}Ni+208^{208}Pb

    Full text link
    We analyzed the experimental data of the pre-scission neutron multiplicity in connection with fission fragments in the reaction 58^{58}Ni+208^{208}Pb at the incident energy corresponding to the excitation energy of compound nucleus EE^{*}=185.9 MeV, which was performed by D\'{e}MoN group. The relation between the pre-scission neutron multiplicity and each reaction process having different reaction time is investigated. In order to study the fusion-fission process accompanied by neutron emission, the fluctuation-dissipation model combined with a statistical model is employed. It is found that the fusion-fission process and the quasi-fission process are clearly distinguished in correlation with the pre-scission neutron multiplicity.Comment: 11 figure
    corecore