7 research outputs found

    Soluciones técnicas en fachadas de edificios mediante aplicación de la fluidodinamica computacional

    Get PDF
    En el presente proyecto se desarrolla una herramienta de software visual, sencilla e interactiva que permite modelar, a partir de sus aspectos constructivos y las condiciones climatológicas externas, el comportamiento térmico de una fachada de doble piel de chapa perforada. El ejecutable se desarrolla en el lenguaje Visual Basic.NET, utilizando el entorno de desarrollo integrado de Microsoft Visual Studio. El modelo matemático que emplea el ejecutable para modelar la fachada está basado en un modelo desarrollado y publicado por el grupo de investigación “Sostenibilidad, Construcción y Materiales”. Dicho grupo implementó su modelo en unas funciones de Matlab®, de las cuales se parte para el desarrollo del ejecutable.In this project, a user-friendly, simple and interactive software application is developed. The application models the thermal behaviour of double skin sheet-metal façades based on its building facts and external environmental conditions. The programming language used for developing the application is Visual Basic.NET, and compiled using the Microsoft Visual Studio integrated development environment. The mathematical model applied by the application to model the façade is based on a model developed and published by the research group “Sostenibilidad, Construcción y Materiales”. The group implemented the model on some Matlab® scripts, which are the base of the development of this application.Proiektu honetan software aplikazio sinple eta interaktibo bat garatzen da. Aplikazioak, fatxadaren izaera konstruktibo- eta eguraldi baldintzetatik abiatuta, metal xafla zulatuko azal bikoitzeko fatxada baten portaera termikoa modelatzen du. Aplikazioaren garapena Visual Basic.NET programazio hizkuntza erabiliz burutzen da. Kodea konpilatzeko, Microsoft Visual Studio garapen ingurune integratua erabiltzen da. Fatxada modelatzeko erabiltzen den eredu matematikoa “Sostenibilidad, Construcción y Materiales” ikerkuntza taldeak garatu eta argitaraturiko ereduan dago oinarritua. Ikerkuntza talde horrek, garaturiko eredua Matlab® softwarearekin erabiltzeko bi funtzioetan idatzi zuen. Funtzio horiek dira aplikazio honen garapenerako oinarria

    Olatu-kanal baten balioztatze esperimentala eta konputazionala

    Get PDF
    BiMEP-Biscay Marine Energy Platform- eta Mutriku Wave Energy Plant-eko azpiegituretan itsas energiaren inguruko ikerkuntza egiten da, itsas baldintza errealetan. Bilboko Ingeniaritza Eskolako Fluidoen Mekanikako laborategian dagoen olatu-kanala (12,5 × 0,6 × 0,7 m, luzera × zabalera × sakonera) azpiegitura horietan izaten diren baldintzak erreproduzitzeko gai da, eskala txikiago batean. Olatu-kanal horrek, pistoi motako olatu-sorgailu bat erabiliz, olatu monokromatiko eta pankromatiko mota desberdinekin lan egiteko aukera eskaintzen du. Ultrasoinuak erabiltzen dituzten zenbait zundak ur-gainazalaren desplazamendu bertikala neurtzen dute, eta tankearen amaieran kokatuta dagoen hondartzak, parabola-formadunak, olatuaren energia disipatzen du horren islapena murriztuz. "Reynolds Averaged Navier Stokes" (RANS) ekuazioetan oinarritutako zenbakizko modelo bat sortu da Star-CCM+ kode komertziala erabiliz, gainazal askean gertatzen diren fenomenoak simulatzeko. Zenbakizko modelo horren balioztatzea aurkezten da artikulu honetan, sakonera, olatu-altuera, uhin-luzera eta periodo desberdinak bateratuta eta egindako esperimentu sortarekin konparatuta. Emaitza guztiak fluxu potentzialaren teoriatik lortutako emaitza analitikoekin batera aztertu dira. Lan honetan aurkezten diren esperimentuek kanal horren eraginkortasunaren mugak ezartzen dituzte, olatuen sorkuntzari, hedapenari eta suntsipenari dagokienez. Etorkizunean egingo diren ikerkuntza-lanetako parametroak ezartzeko ere baliogarria izan da lan hau: egitura flotagarrien eta olatuen arteko interakzioa, olatu energiaren bihurgailuak eta ainguratze- eta amarradura-sistemak aztertuko dira.; A wave flume of 12.5 × 0.6 × 0.7 m (length × width × height) able to reproduce the ocean conditions of the most representative research facilities in the Basque Country (BiMEP-Biscay Marine Energy Platform and Mutriku Wave Energy Plant) has been installed at the laboratory of Fluid Mechanics of the Faculty of Engineering in Bilbao. This new facility has the capacity of producing a wide range of monochromatic and panchromatic waves by a piston-type wavemaker.Several ultrasonic wave probes measure the surface elevation, and the wave energy is dissipated in a passive parabolic beach in order to diminish significantly the reflection along the flume. A numerical model based on Reynolds Averaged Navier Stokes (RANS) equations has been developed to represent the turbulence and Eulerian Volume of Fluid (VOF) unsteady approach in STAR-CCM+ CFD code to track the evolution of the free surface. This numerical model has been validated with the corresponding experimental campaign covering a wide range of depths, wave heights, wavelengths and periods.The results are analysed together with the analytical solution coming from the potential flow theory. The experiments carried out in the present work establish the operational limits of the wave flume in terms of wave generation, propagation and extinction, defining the operational range of future experimental and computational campaigns where wave interaction with floating structures, wave energy converters and mooring systems will be studied

    OC6 Phase II: Integration and verification of a new soil–structure interaction model for offshore wind design

    Get PDF
    This paper provides a summary of the work done within the OC6 Phase II project, which was focused on the implementation and verification of an advanced soil–structure interaction model for offshore wind system design and analysis. The soil–structure interaction model comes from the REDWIN project and uses an elastoplastic, macroelement model with kinematic hardening, which captures the stiffness and damping characteristics of offshore wind foundations more accurately than more traditional and simplified soil–structure interaction modeling approaches. Participants in the OC6 project integrated this macroelement capability to coupled aero-hydro-servo-elastic offshore wind turbine modeling tools and verified the implementation by comparing simulation results across the modeling tools for an example monopile design. The simulation results were also compared to more traditional soil–structure interaction modeling approaches like apparent fixity, coupled springs, and distributed springs models. The macroelement approach resulted in smaller overall loading in the system due to both shifts in the system frequencies and increased energy dissipation. No validation work was performed, but the macroelement approach has shown increased accuracy within the REDWIN project, resulting in decreased uncertainty in the design. For the monopile design investigated here, that implies a less conservative and thus more cost-effective offshore wind design.US Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office, Grant/Award Number: DE-AC36-08GO2830

    OC6 project phase III : validation of the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure

    Get PDF
    This paper provides a summary of the work done within Phase III of the Offshore Code Comparison, Collaboration, Continued, with Correlation and unCertainty project (OC6), under International Energy Agency Wind Task 30. This phase focused on validating the aerodynamic loading on a wind turbine rotor undergoing large motion caused by a floating support structure. Numerical models of the Danish Technical University 10-MW reference wind turbine were validated using measurement data from a 1:75 scale test performed during the UNsteady Aerodynamics for FLOating Wind (UNAFLOW) project and a follow-on experimental campaign, both performed at the Politecnico di Milano wind tunnel. Validation of the models was performed by comparing the loads for steady (fixed platform) and unsteady wind conditions (harmonic motion of the platform). For the unsteady wind conditions, the platform was forced to oscillate in the surge and pitch directions under several frequencies and amplitudes. These oscillations result in a wind variation that impacts the rotor loads (e.g., thrust and torque). For the conditions studied in these tests, the system mainly described a quasi-steady aerodynamic behavior. Only a small hysteresis in airfoil performance undergoing angle of attack variations in attached flow was observed. During the experiments, the rotor speed and blade pitch angle were held constant. However, in real wind turbine operating conditions, the surge and pitch variations would result in rotor speed variations and/or blade pitch actuations depending on the wind turbine controller region that the system is operating. Additional simulations with these control parameters were conducted to verify the fidelity between different models. Participant results showed in general a good agreement with the experimental measurements and the need to account for dynamic inflow when there are changes in the flow conditions due to the rotor speed variations or blade pitch actuations in response to surge and pitch motion. Numerical models not accounting for dynamic inflow effects predicted rotor loads that were 9 % lower in amplitude during rotor speed variations and 18 % higher in amplitude during blade pitch actuations

    Legislative Documents

    Get PDF
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    OC6 Phase II: Integration and verification of a new soil–structure interaction model for offshore wind design

    No full text
    This paper provides a summary of the work done within the OC6 Phase II project, which was focused on the implementation and verification of an advanced soil–structure interaction model for offshore wind system design and analysis. The soil–structure interaction model comes from the REDWIN project and uses an elastoplastic, macroelement model with kinematic hardening, which captures the stiffness and damping characteristics of offshore wind foundations more accurately than more traditional and simplified soil–structure interaction modeling approaches. Participants in the OC6 project integrated this macroelement capability to coupled aero-hydro-servo-elastic offshore wind turbine modeling tools and verified the implementation by comparing simulation results across the modeling tools for an example monopile design. The simulation results were also compared to more traditional soil–structure interaction modeling approaches like apparent fixity, coupled springs, and distributed springs models. The macroelement approach resulted in smaller overall loading in the system due to both shifts in the system frequencies and increased energy dissipation. No validation work was performed, but the macroelement approach has shown increased accuracy within the REDWIN project, resulting in decreased uncertainty in the design. For the monopile design investigated here, that implies a less conservative and thus more cost-effective offshore wind design
    corecore