133 research outputs found

    Tunneling of ultracold atoms in time-independent potentials

    Full text link
    We present theoretical as well as experimental results on resonantly enhanced quantum tunneling of Bose-Einstein condensates in optical lattices both in the linear case of single particle dynamics and in the presence of atom-atom interactions. Our results demonstrate the usefulness of condensates in optical lattices for the dynamical control of tunneling and for simulating Hamiltonians originally used for describing solid state phenomena.Comment: slightly amended version published as ch. 11 of a book edited by S. Keshavamurthy and P. Schlagheck with the title "Dynamical Tunneling: Theory and Experiment

    Bose-Einstein condensates in 1D optical lattices: nonlinearity and Wannier-Stark spectra

    Full text link
    We present our experimental investigations on the subject of nonlinearity-modified Bloch-oscillations and of nonlinear Landau-Zener tunneling between two energy bands in a rubidium Bose Einstein condensate in an accelerated periodic potential. Nonlinearity introduces an asymmetry in Landau-Zener tunneling. We also present measurements of resonantly enhanced tunneling between the Wannier-Stark energy levels for Bose-Einstein condensates loaded into an optical lattice.Comment: Chapter of "Nonlinearities of Periodic Structures and Metamaterials" (edited by C. Denz, S. Flach, and Yu. Kivshar) to be published by Springe

    Two-photon and EIT-assisted Doppler cooling in a three-level cascade system

    Get PDF
    Laser cooling is theoretically investigated in a cascade three-level scheme, where the excited state of a laser-driven transition is coupled by a second laser to a top, more stable level, as for alkali-earth atoms. The second laser action modifies the atomic scattering cross section and produces temperatures lower than those reached by Doppler cooling on the lower transition. When multiphoton processes due to the second laser are relevant, an electromagnetic induced transparency modifies the absorption of the first laser, and the final temperature is controlled by the second laser parameters. When the intermediate state is only virtually excited, the dynamics is dominated by the two-photon process and the final temperature is determined by the spontaneous decay rate of the top state.Comment: 5 pages, 3 figures. Revised version, accepted for publication in Phys. Rev A (Rapid Comm.

    Four-level N-scheme crossover resonances in Rb saturation spectroscopy in magnetic fields

    Full text link
    We perform saturated absorption spectroscopy on the D_2\_2 line for room temperature rubidium atoms immersed in magnetic fields within the 0.05-0.13 T range. At those medium-high field values the hyperfine structure in the excited state is broken by the Zeeman effect, while in the ground state hyperfine structure and Zeeman shifts are comparable. The observed spectra are composed by a large number of absorption lines. We identify them as saturated absorptions on two-level systems, on three-level systems in a V configuration and on four-level systems in a N or double-N configuration where two optical transitions not sharing a common level are coupled by spontaneous emission decays. We analyze the intensity of all those transitions within a unified simple theoretical model. We concentrate our attention on the double-N crossovers signals whose intensity is very large because of the symmetry in the branching ratios of the four levels. We point out that these structures, present in all alkali atoms at medium-high magnetic fields, have interesting properties for electromagnetically induced transparency and slow light applications.Comment: Submitted to Physical Review

    Probe light-shift elimination in Generalized Hyper-Ramsey quantum clocks

    Full text link
    We present a new interrogation scheme for the next generation of quantum clocks to suppress frequency-shifts induced by laser probing fields themselves based on Generalized Hyper-Ramsey resonances. Sequences of composite laser pulses with specific selection of phases, frequency detunings and durations are combined to generate a very efficient and robust frequency locking signal with almost a perfect elimination of the light-shift from off resonant states and to decouple the unperturbed frequency measurement from the laser's intensity. The frequency lock point generated from synthesized error signals using either π/4\pi/4 or 3π/43\pi/4 laser phase-steps during the intermediate pulse is tightly protected against large laser pulse area variations and errors in potentially applied frequency shift compensations. Quantum clocks based on weakly allowed or completely forbidden optical transitions in atoms, ions, molecules and nuclei will benefit from these hyper-stable laser frequency stabilization schemes to reach relative accuracies below the 1018^{-18} level.Comment: accepted for publication in Phys. Rev.

    Bright and dark Autler-Townes states in the atomic Rydberg multilevel spectroscopy

    Get PDF
    We investigated the Autler-Townes (AT) splitting produced by microwave (mw) transitions between atomic Rydberg states explored by optical spectroscopy from the ground electronic state. The laser-atom Hamiltonian describing the double irradiation of such a multilevel system is analysed on the basis of the Morris-Shore transformation. The application of this transformation to the mw-dressed atomic system allows the identification of bright, dark, and spectator states associated with different configurations of atomic states and mw polarisations. We derived synthetic spectra that show the main features of Rydberg spectroscopy. Complex AT spectra are obtained in a regime of strong mw dressing, where a hybridisation of the Rydberg fine structure states is produced by the driving

    Magic radio-frequency dressing of nuclear spins in high-accuracy optical clocks

    Full text link
    A Zeeman-insensitive optical clock atomic transition is engineered when nuclear spins are dressed by a non resonant radio-frequency field. For fermionic species as 87^{87}Sr, 171^{171}Yb, and 199^{199}Hg, particular ratios between the radiofrequency driving amplitude and frequency lead to "magic" magnetic values where a net cancelation of the Zeeman clock shift and a complete reduction of first order magnetic variations are produced within a relative uncertainty below the 101810^{-18} level. An Autler-Townes continued fraction describing a semi-classical radio-frequency dressed spin is numerically computed and compared to an analytical quantum description including higher order magnetic field corrections to the dressed energies.Comment: accepted for publication in Phys. Rev. Let

    Coherent transport of cold atoms in angle-tuned optical lattices

    Get PDF
    Optical lattices with a large spacing between the minima of the optical potential can be created using the angle-tuned geometry where the 1-D periodic potential is generated by two propagating laser beams intersecting at an angle different from π\pi. The present work analyzes the coherent transport for the case of this geometry. We show that the potential depth can be kept constant during the transport by choosing a magic value for the laser wavelength. This value agrees with that of the counterpropagating laser case, and the magic wavelength does not depend of the optical lattice geometry. Moreover, we find that this scheme can be used to implement controlled collision experiments under special geometric conditions. Finally we study the transport of hyperfine-Zeeman states of rubidium 87.Comment: 8 pages, 5 figures, one section added, in press in Phys. Rev.

    Ultracold Rubidium atoms excited to Rydberg levels

    Get PDF
    Ultracold atomic gases excited to strongly interacting Rydberg states are a promising system for quantum simulations of many-body systems. The dipole blockade of Rydberg excitations is a hallmark of the strong interactions between atoms in these high-lying quantum states. We have measured the Rydberg excitation for rubidium ultracold atoms in magneto-optical traps and for Bose-Einstein condensates loaded into quasi one-dimensional traps. One of the consequences of the dipole blockade is the suppression of fluctuations in the counting statistics of Rydberg excitations. We have obtained experimental results on the dynamics and the counting statistics of Rydberg excitations of ultra-cold Rubidium atoms both on and off resonance, which exhibit sub- and super-Poissonian counting statistics, respectively. We have found strongly bimodal counting distributions in the offresonant regime

    Unearthing wave-function renormalization effects in the time evolution of a Bose-Einstein condensate

    Full text link
    We study the time evolution of a Bose-Einstein condensate in an accelerated optical lattice. When the condensate has a narrow quasimomentum distribution and the optical lattice is shallow, the survival probability in the ground band exhibits a steplike structure. In this regime we establish a connection between the wave-function renormalization parameter ZZ and the phenomenon of resonantly enhanced tunneling.Comment: 12 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1201.628
    corecore