217 research outputs found

    On observability of Renyi's entropy

    Get PDF
    Despite recent claims we argue that Renyi's entropy is an observable quantity. It is shown that, contrary to popular belief, the reported domain of instability for Renyi entropies has zero measure (Bhattacharyya measure). In addition, we show the instabilities can be easily emended by introducing a coarse graining into an actual measurement. We also clear up doubts regarding the observability of Renyi's entropy in (multi--)fractal systems and in systems with absolutely continuous PDF's.Comment: 18 pages, 1 EPS figure, REVTeX, minor changes, accepted to Phys. Rev.

    Suboptimal quantum-error-correcting procedure based on semidefinite programming

    Get PDF
    In this paper, we consider a simplified error-correcting problem: for a fixed encoding process, to find a cascade connected quantum channel such that the worst fidelity between the input and the output becomes maximum. With the use of the one-to-one parametrization of quantum channels, a procedure finding a suboptimal error-correcting channel based on a semidefinite programming is proposed. The effectiveness of our method is verified by an example of the bit-flip channel decoding.Comment: 6 pages, no figure, Some notations differ from those in the PRA versio

    Scaling, self-similar solutions and shock waves for V-shaped field potentials

    Full text link
    We investigate a (1+1)-dimensional nonlinear field theoretic model with the field potential V(ϕ)=ϕ.V(\phi)| = |\phi|. It can be obtained as the universal small amplitude limit in a class of models with potentials which are symmetrically V-shaped at their minima, or as a continuum limit of certain mechanical system with infinite number of degrees of freedom. The model has an interesting scaling symmetry of the 'on shell' type. We find self-similar as well as shock wave solutions of the field equation in that model.Comment: Two comments and one reference adde

    Finite-temperature form factors in the free Majorana theory

    Full text link
    We study the large distance expansion of correlation functions in the free massive Majorana theory at finite temperature, alias the Ising field theory at zero magnetic field on a cylinder. We develop a method that mimics the spectral decomposition, or form factor expansion, of zero-temperature correlation functions, introducing the concept of "finite-temperature form factors". Our techniques are different from those of previous attempts in this subject. We show that an appropriate analytical continuation of finite-temperature form factors gives form factors in the quantization scheme on the circle. We show that finite-temperature form factor expansions are able to reproduce expansions in form factors on the circle. We calculate finite-temperature form factors of non-interacting fields (fields that are local with respect to the fundamental fermion field). We observe that they are given by a mixing of their zero-temperature form factors and of those of other fields of lower scaling dimension. We then calculate finite-temperature form factors of order and disorder fields. For this purpose, we derive the Riemann-Hilbert problem that completely specifies the set of finite-temperature form factors of general twist fields (order and disorder fields and their descendants). This Riemann-Hilbert problem is different from the zero-temperature one, and so are its solutions. Our results agree with the known form factors on the circle of order and disorder fields.Comment: 40 pp.; v2: 42 pp., refs and acknowledgment added, typos corrected, description of general matrix elements corrected and extended; v3: 47 pp., appendix adde

    Measuring non-extensitivity parameters in a turbulent Couette-Taylor flow

    Full text link
    We investigate probability density functions of velocity differences at different distances r measured in a Couette-Taylor flow for a range of Reynolds numbers Re. There is good agreement with the predictions of a theoretical model based on non-extensive statistical mechanics (where the entropies are non-additive for independent subsystems). We extract the scale-dependent non-extensitivity parameter q(r, Re) from the laboratory data.Comment: 8 pages, 5 figure

    Metastability, negative specific heat and weak mixing in classical long-range many-rotator system

    Full text link
    We perform a molecular dynamical study of the isolated d=1d=1 classical Hamiltonian H=1/2i=1NLi2+ij1cos(θiθj)rijα;(α0){\cal H} = {1/2} \sum_{i=1}^N L_i^2 + \sum_{i \ne j} \frac{1-cos(\theta_i-\theta_j)}{r_{ij}^\alpha} ;(\alpha \ge 0), known to exhibit a second order phase transition, being disordered for uU/NN~uc(α,d)u \equiv U/N{\tilde N} \ge u_c(\alpha,d) and ordered otherwise (UU\equiv total energy and N~N1α/dα/d1α/d{\tilde N} \equiv \frac{N^{1-\alpha/d}-\alpha/d}{1-\alpha/d}). We focus on the nonextensive case α/d1\alpha/d \le 1 and observe that, for u<ucu<u_c, a basin of attraction exists for the initial conditions for which the system quickly relaxes onto a longstanding metastable state (whose duration presumably diverges with NN like N~{\tilde N}) which eventually crosses over to the microcanonical Boltzmann-Gibbs stable state. The temperature associated with the (scaled) average kinetic energy per particle is lower in the metastable state than in the stable one. It is exhibited for the first time that the appropriately scaled maximal Lyapunov exponent λu<ucmax(metastable)Nκmetastable;(N)\lambda_{u<u_c}^{max}(metastable) \propto N^{-\kappa_{metastable}} ;(N \to \infty), where, for all values of α/d\alpha/d, κmetastable\kappa_{metastable} numerically coincides with {\it one third} of its value for u>ucu>u_c, hence decreases from 1/9 to zero when α/d\alpha/d increases from zero to unity, remaining zero thereafter. This new and simple {\it connection between anomalies above and below the critical point} reinforces the nonextensive universality scenario.Comment: 9 pages and 4 PS figure

    Acceleration and vortex filaments in turbulence

    Full text link
    We report recent results from a high resolution numerical study of fluid particles transported by a fully developed turbulent flow. Single particle trajectories were followed for a time range spanning more than three decades, from less than a tenth of the Kolmogorov time-scale up to one large-eddy turnover time. We present some results concerning acceleration statistics and the statistics of trapping by vortex filaments.Comment: 10 pages, 5 figure

    Joint spatiotemporal models to predict seabird densities at sea

    Get PDF
    Introduction: Seabirds are abundant, conspicuous members of marine ecosystems worldwide. Synthesis of distribution data compiled over time is required to address regional management issues and understand ecosystem change. Major challenges when estimating seabird densities at sea arise from variability in dispersion of the birds, sampling effort over time and space, and differences in bird detection rates associated with survey vessel type. Methods: Using a novel approach for modeling seabirds at sea, we applied joint dynamic species distribution models (JDSDM) with a vector-autoregressive spatiotemporal framework to survey data collected over nearly five decades and archived in the North Pacific Pelagic Seabird Database. We produced monthly gridded density predictions and abundance estimates for 8 species groups (77% of all birds observed) within Cook Inlet, Alaska. JDSDMs included habitat covariates to inform density predictions in unsampled areas and accounted for changes in observed densities due to differing survey methods and decadal-scale variation in ocean conditions. Results: The best fit model provided a high level of explanatory power (86% of deviance explained). Abundance estimates were reasonably precise, and consistent with limited historical studies. Modeled densities identified seasonal variability in abundance with peak numbers of all species groups in July or August. Seabirds were largely absent from the study region in either fall (e.g., murrelets) or spring (e.g., puffins) months, or both periods (shearwaters). Discussion: Our results indicated that pelagic shearwaters (Ardenna spp.) and tufted puffin (Fratercula cirrhata) have declined over the past four decades and these taxa warrant further investigation into underlying mechanisms explaining these trends. JDSDMs provide a useful tool to estimate seabird distribution and seasonal trends that will facilitate risk assessments and planning in areas affected by human activities such as oil and gas development, shipping, and offshore wind and renewable energy

    Magnetic behavior of a non-extensive S-spin system: possible connections to manganites

    Full text link
    We analyzed the magnetic behavior of a S-spin system within framework of the Tsallis nonextensive statistics, employing the normalized approach. Unusual properties on magnetization, entropy and susceptibility emerge, as a consequence of nonextensivity. We further show that the nonextensive approach can be relevant to the field of manganites, materials which exhibit long-range interactions and fractality, two basic ingredients for nonextensivity. Our results are in qualitative agreement to experimental data in La0.67_{0.67}Ca0.33_{0.33}MnO3_3 and Pr0.5_{0.5}Ca0.5_{0.5}Mn0.95_{0.95}Ga0.05_{0.05}O3_3 manganites.Comment: 5 pages and 6 figures. Submitted to Phys. Rev.

    From Davydov solitons to decoherence-free subspaces: self-consistent propagation of coherent-product states

    Get PDF
    The self-consistent propagation of generalized D1D_{1} [coherent-product] states and of a class of gaussian density matrix generalizations is examined, at both zero and finite-temperature, for arbitrary interactions between the localized lattice (electronic or vibronic) excitations and the phonon modes. It is shown that in all legitimate cases, the evolution of D1D_{1} states reduces to the disentangled evolution of the component D2D_{2} states. The self-consistency conditions for the latter amount to conditions for decoherence-free propagation, which complement the D2D_{2} Davydov soliton equations in such a way as to lift the nonlinearity of the evolution for the on-site degrees of freedom. Although it cannot support Davydov solitons, the coherent-product ansatz does provide a wide class of exact density-matrix solutions for the joint evolution of the lattice and phonon bath in compatible systems. Included are solutions for initial states given as a product of a [largely arbitrary] lattice state and a thermal equilibrium state of the phonons. It is also shown that external pumping can produce self-consistent Frohlich-like effects. A few sample cases of coherent, albeit not solitonic, propagation are briefly discussed.Comment: revtex3, latex2e; 22 pages, no figs.; to appear in Phys.Rev.E (Nov.2001
    corecore