Abstract

We perform a molecular dynamical study of the isolated d=1d=1 classical Hamiltonian H=1/2i=1NLi2+ij1cos(θiθj)rijα;(α0){\cal H} = {1/2} \sum_{i=1}^N L_i^2 + \sum_{i \ne j} \frac{1-cos(\theta_i-\theta_j)}{r_{ij}^\alpha} ;(\alpha \ge 0), known to exhibit a second order phase transition, being disordered for uU/NN~uc(α,d)u \equiv U/N{\tilde N} \ge u_c(\alpha,d) and ordered otherwise (UU\equiv total energy and N~N1α/dα/d1α/d{\tilde N} \equiv \frac{N^{1-\alpha/d}-\alpha/d}{1-\alpha/d}). We focus on the nonextensive case α/d1\alpha/d \le 1 and observe that, for u<ucu<u_c, a basin of attraction exists for the initial conditions for which the system quickly relaxes onto a longstanding metastable state (whose duration presumably diverges with NN like N~{\tilde N}) which eventually crosses over to the microcanonical Boltzmann-Gibbs stable state. The temperature associated with the (scaled) average kinetic energy per particle is lower in the metastable state than in the stable one. It is exhibited for the first time that the appropriately scaled maximal Lyapunov exponent λu<ucmax(metastable)Nκmetastable;(N)\lambda_{u<u_c}^{max}(metastable) \propto N^{-\kappa_{metastable}} ;(N \to \infty), where, for all values of α/d\alpha/d, κmetastable\kappa_{metastable} numerically coincides with {\it one third} of its value for u>ucu>u_c, hence decreases from 1/9 to zero when α/d\alpha/d increases from zero to unity, remaining zero thereafter. This new and simple {\it connection between anomalies above and below the critical point} reinforces the nonextensive universality scenario.Comment: 9 pages and 4 PS figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020