17 research outputs found

    Carbon-assisted chemical vapor deposition of hexagonal boron nitride

    Get PDF
    We show that in a low-pressure chemical vapor deposition (CVD) system, the residual oxygen and/or air play a crucial role in the mechanism of the growth of hexagonal boron nitride (h-BN) films on Ni foil 'enclosures'. Hexagonal-BN films grow on the Ni foil surface via the formation of an intermediate boric-oxide (BOx) phase followed by a thermal reduction of the BOx by a carbon source (either amorphous carbon powder or methane), leading to the formation of single-and bi-layer h-N. Low energy electron microscopy (LEEM) and diffraction (LEED) were used to map the number of layers over large areas; Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) were used to characterize the structure and physical quality of the ultra-thin h-BN film. The growth procedure reported here leads to a better understanding and control of the synthesis of ultra-thin h-BN films

    Tungsten oxide mediated quasi-van der Waals Epitaxy of WS2 on Sapphire

    Get PDF
    Conventional epitaxy plays a crucial role in current state-of-the art semiconductor technology, as it provides a path for accurate control at the atomic scale of thin films and nanostructures, to be used as the building blocks in nanoelectronics, optoelectronics, sensors, etc. Four decades ago, the terms “van der Waals” (vdW) and “quasi-vdW (Q-vdW) epitaxy” were coined to explain the oriented growth of vdW layers on 2D and 3D substrates, respectively. The major difference with conventional epitaxy is the weaker interaction between the epi-layer and the epi-substrates. Indeed, research on Q-vdW epitaxial growth of transition metal dichalcogenides (TMDCs) has been intense, with oriented growth of atomically thin semiconductors on sapphire being one of the most studied systems. Nonetheless, there are some striking and not yet understood differences in the literature regarding the orientation registry between the epi-layers and epi-substrate and the interface chemistry. Here we study the growth of WS2 via a sequential exposure of the metal and the chalcogen precursors in a metal–organic chemical vapor deposition (MOCVD) system, introducing a metal-seeding step prior to the growth. The ability to control the delivery of the precursor made it possible to study the formation of a continuous and apparently ordered WO3 mono- or few-layer at the surface of a c-plane sapphire. Such an interfacial layer is shown to strongly influence the subsequent quasi-vdW epitaxial growth of the atomically thin semiconductor layers on sapphire. Hence, here we elucidate an epitaxial growth mechanism and demonstrate the robustness of the metal-seeding approach for the oriented formation of other TMDC layers. This work may enable the rational design of vdW and quasi-vdW epitaxial growth on different material systems

    Edge-Based Two-Dimensional α‑In<sub>2</sub>Se<sub>3</sub>–MoS<sub>2</sub> Ferroelectric Field Effect Device

    No full text
    Heterostructures based on two-dimensional materials offer the possibility to achieve synergistic functionalities, which otherwise remain secluded by their individual counterparts. Herein, ferroelectric polarization switching in α-In2Se3 has been utilized to engineer multilevel nonvolatile conduction states in a partially overlapping α-In2Se3–MoS2-based ferroelectric semiconducting field effect device. In particular, we demonstrate how the intercoupled ferroelectric nature of α-In2Se3 allows to nonvolatilely switch between n-i and n-i-n type junction configurations based on a novel edge state actuation mechanism, paving the way for subnanometric scale nonvolatile device miniaturization. Furthermore, the induced asymmetric polarization enables enhanced photogenerated carriers’ separation, resulting in an extremely high photoresponse of ∼1275 A/W in the visible range and strong nonvolatile modulation of the bright A- and B- excitonic emission channels in the overlaying MoS2 monolayer. Our results show significant potential to harness the switchable polarization in partially overlapping α-In2Se3–MoS2 based FeFETs to engineer multimodal, nonvolatile nanoscale electronic and optoelectronic devices

    Mesoscale Imperfections in MoS<sub>2</sub> Atomic Layers Grown by a Vapor Transport Technique

    No full text
    The success of isolating small flakes of atomically thin layers through mechanical exfoliation has triggered enormous research interest in graphene and other two-dimensional materials. For device applications, however, controlled large-area synthesis of highly crystalline monolayers with a low density of electronically active defects is imperative. Here, we demonstrate the electrical imaging of dendritic ad-layers and grain boundaries in monolayer molybdenum disulfide (MoS<sub>2</sub>) grown by a vapor transport technique using microwave impedance microscopy. The micrometer-sized precipitates in our films, which appear as a second layer of MoS<sub>2</sub> in conventional height and optical measurements, show ∼2 orders of magnitude higher conductivity than that of the single layer. The zigzag grain boundaries, on the other hand, are shown to be more resistive than the crystalline grains, consistent with previous studies. Our ability to map the local electrical properties in a rapid and nondestructive manner is highly desirable for optimizing the growth process of large-scale MoS<sub>2</sub> atomic layers
    corecore