14 research outputs found

    miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS.

    Get PDF
    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease\u27s etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalize

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Looking for answers far away from the soma—the (un)known axonal functions of TDP-43, and their contribution to early NMJ disruption in ALS

    No full text
    Abstract Axon degeneration and Neuromuscular Junction (NMJ) disruption are key pathologies in the fatal neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). Despite accumulating evidence that axons and NMJs are impacted at a very early stage of the disease, current knowledge about the mechanisms leading to their degeneration remains elusive. Cytoplasmic mislocalization and accumulation of the protein TDP-43 are considered key pathological hallmarks of ALS, as they occur in ~ 97% of ALS patients, both sporadic and familial. Recent studies have identified pathological accumulation of TDP-43 in intramuscular nerves of muscle biopsies collected from pre-diagnosed, early symptomatic ALS patients. These findings suggest a gain of function for TDP-43 in axons, which might facilitate early NMJ disruption. In this review, we dissect the process leading to axonal TDP-43 accumulation and phosphorylation, discuss the known and hypothesized roles TDP-43 plays in healthy axons, and review possible mechanisms that connect TDP-43 pathology to the axon and NMJ degeneration in ALS

    Whole cell biosensor for water toxicity monitoring

    No full text
    International audienc

    Multiple Copies of microRNA Binding Sites in Long 3â€ČUTR Variants Regulate Axonal Translation

    No full text
    Rapid responses to changes within subcellular compartments of highly polarized cells, such as neuron axons, depend on local translation and post-transcriptional regulation. The mechanism by which microRNAs (miRNAs) regulate this process is not fully understood. Here, using live cell imaging and RNA sequencing analysis, we demonstrated how miRNAs can differentially control hundreds of transcripts at the subcellular level. We demonstrated that the seed match length of the miRNA target-sequence regulates both mRNA stability and protein translation rates. While longer seed matches have an increased inhibitory effect, transcriptome analysis did not reveal differences in seed match length between axonal and somata mRNAs of motor neurons. However, mRNA variants with longer 3â€ČUTR are enriched in axons and contain multiple repeats of specific miRNA target sequences. Finally, we demonstrated that the long 3â€ČUTR mRNA variant of the motor protein Kif5b is enriched explicitly in motor neuron axons and contains multiple sequence repeats for binding miR-129-5p. This subsequently results in the differential post-transcriptional regulation of kif5b and its synthesis in axons. Thus, we suggest that the number of miRNA binding sites at the 3â€ČUTR of the mRNA, rather than the miRNA seed match length, regulates the axonal transcriptome

    A CRMP4‐dependent retrograde axon‐to‐soma death signal in amyotrophic lateral sclerosis

    Full text link
    Amyotrophic lateral sclerosis (ALS) is a fatal non‐cell‐autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A‐ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72‐mutant patients, and the SOD1G93A‐ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS‐affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4‐dynein interaction reduces MN loss in human‐derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4‐dependent retrograde death signal that underlies MN loss in ALS.SynopsisIdentification of an intracellular mechanism that mediates motor neuron (MN) death in Amyotrophic Lateral Sclerosis (ALS). CRMP4 binds the motor protein dynein and transports from distal axons to the soma where it promotes MN death. Blocking the CRMP4‐dynein interaction reduces MN death in human‐derived MNs (C9orf72) and in ALS mice.CRMP4 protein level is altered along ALS diseased motor unit.Dynein mediates CRMP4 mislocalization in motor neurons via specific CRMP4 motif.CRMP4‐dynein complexes are enhanced in ALS diseased MNs.CRMP4‐dynein complex formation facilitates selective neuronal loss in ALS.Dynein‐mediated CRMP4 redistribution from axons into the cell bodies of ALS‐affected motor neurons promotes selective neuronal toxicity in diverse ALS model‐ and patient‐derived cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/1/embj2020107586.reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/2/embj2020107586.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/3/embj2020107586-sup-0001-Appendix.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/4/embj2020107586_am.pd

    Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins

    No full text
    Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of similar to 95% of amyotrophic lateral sclerosis (ALS) patients, but the contribution of axonal TDP-43 to this neurodegenerative disease is unclear. Here, we show TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP-43 mislocalization mouse model. In axons, TDP-43 is hyperphosphorylated and promotes G3BP1-positive ribonucleoprotein (RNP) condensate assembly, consequently inhibiting local protein synthesis in distal axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondrial proteins are reduced. Clearance of axonal TDP-43 or dissociation of G3BP1 condensates restored local translation and resolved TDP-43-derived toxicity in both axons and NMJs. These findings support an axonal gain of function of TDP-43 in ALS, which can be targeted for therapeutic development

    Detection of Multiple Sclerosis from Exhaled Breath Using Bilayers of Polycyclic Aromatic Hydrocarbons and Single-Wall Carbon Nanotubes

    No full text
    A cross-reactive array of polycyclic aromatic hydrocarbons and single wall carbon nanotube bilayers was designed for the detection of volatile organic compounds (tentatively, hexanal and 5-methyl-undecane) that identify the presence of disease in the exhaled breath of patients with multiple sclerosis. The sensors showed excellent discrimination between hexanal, 5-methyl-undecane, and other confounding volatile organic compounds. Results obtained from a clinical study consisting of 51 volunteers showed that the sensors could discriminate between multiple sclerosis and healthy states from exhaled breath samples with 85.3% sensitivity, 70.6% specificity, and 80.4% accuracy. These results open new frontiers in the development of a fast, noninvasive, and inexpensive medical diagnostic tool for the detection and identification of multiple sclerosis. The results could serve also as a launching pad for the discrimination between different subphases or stages of multiple sclerosis as well as for the identification of multiple sclerosis patients who would respond well to immunotherapy

    The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines

    Get PDF
    Pierce’s disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms
    corecore