7 research outputs found

    The Effects of Nutrient Dynamics on Root Patch Choice

    Get PDF
    Plants have been recognized to be capable of allocating more roots to rich patches in the soil. We tested the hypothesis that in addition to their sensitivity to absolute differences in nutrient availability, plants are also responsive to temporal changes in nutrient availability. Different roots of the same Pisum sativum plants were subjected to variable homogeneous and heterogeneous temporally – dynamic and static nutrient regimes. When given a choice, plants not only developed greater root biomasses in richer patches; they discriminately allocated more resources to roots that developed in patches with increasing nutrient levels, even when their other roots developed in richer patches. These results suggest that plants are able to perceive and respond to dynamic environmental changes. This ability might enable plants to increase their performance by responding to both current and anticipated resource availabilities in their immediate proximity

    Egg production

    No full text
    Each row represents eggs laid by a group of fleas fed simultaneously on the same host

    Emergence success

    No full text
    Each row represents a group of papae from the same clutch of eggs laid at the same day by a group of females fed on the same host individua

    Data from: Use it or lose it: reproductive implications of ecological specialization in a haematophagous ectoparasite

    No full text
    Using experimentally induced disruptive selection, we tested two hypotheses regarding the evolution of specialization in parasites. The ‘trade-off’ hypothesis suggests that adaptation to a specific host may come at the expense of a reduced performance when exploiting another host. The alternative ‘relaxed selection’ hypothesis suggests that the ability to exploit a given host would deteriorate when becoming obsolete. Three replicate populations of a flea Xenopsylla ramesis were maintained on each of two rodent hosts, Meriones crassus and Dipodillus dasyurus, for nine generations. Fleas maintained on a specific host species for a few generations substantially decreased their reproductive performance when transferred to an alternative host species, whereas they generally did not increase their performance on their maintenance host. The results support the ‘relaxed selection’ hypothesis of the evolution of ecological specialization in haematophagous ectoparasites, while suggesting that trade-offs are unlikely drivers of specialization. Further work is needed to study the extent by which the observed specializations are based on epigenetic or genetic modifications

    Pupation success

    No full text
    Each row represents a clutch of eggs laid at the same day by a group of females fed on the same host individua

    Cranial Base Synchondrosis Lacks PTHrP-Expressing Column-Forming Chondrocytes

    No full text
    The cranial base contains a special type of growth plate termed the synchondrosis, which functions as the growth center of the skull. The synchondrosis is composed of bidirectional opposite-facing layers of resting, proliferating, and hypertrophic chondrocytes, and lacks the secondary ossification center. In long bones, the resting zone of the epiphyseal growth plate houses a population of parathyroid hormone-related protein (PTHrP)-expressing chondrocytes that contribute to the formation of columnar chondrocytes. Whether PTHrP+ chondrocytes in the synchondrosis possess similar functions remains undefined. Using Pthrp-mCherry knock-in mice, we found that PTHrP+ chondrocytes predominantly occupied the lateral wedge-shaped area of the synchondrosis, unlike those in the femoral growth plate that reside in the resting zone within the epiphysis. In vivo cell-lineage analyses using a tamoxifen-inducible Pthrp-creER line revealed that PTHrP+ chondrocytes failed to establish columnar chondrocytes in the synchondrosis. Therefore, PTHrP+ chondrocytes in the synchondrosis do not possess column-forming capabilities, unlike those in the resting zone of the long bone growth plate. These findings support the importance of the secondary ossification center within the long bone epiphysis in establishing the stem cell niche for PTHrP+ chondrocytes, the absence of which may explain the lack of column-forming capabilities of PTHrP+ chondrocytes in the cranial base synchondrosis
    corecore