25 research outputs found

    HadA is an atypical new multifunctional trimeric coiled-coil adhesin of Haemophilus influenzae biogroup aegyptius, which promotes entry into host cells.

    Get PDF
    Summary The Oca (Oligomeric coiled-coil adhesin) family is a subgroup of the bacterial trimeric autotrans- porter adhesins, which includes structurally related proteins, such as YadA of Yersinia entero- colitica and NadA of Neisseria meningitidis. In this study, we searched in silico for novel members of this family in bacterial genomes and identified HadA (Haemophilus adhesin A), a trimeric autotransporter expressed only by Haemophilus influenzae biogroup aegyptius causing Brazilian purpuric fever (BPF), a fulminant septicemic disease of children. By comparative genomics and sequence analysis we predicted that the hadA gene is harboured on a mobile genetic element unique to BPF isolates. Biological analysis of HadA in the native background was limited because this organism is not amenable to genetic manipulation. Alternatively, we demonstrated that expression of HadA confers to a non-invasive Escherichia coli strain the ability to adhere to human cells and to extracellular matrix proteins and to induce in vitro bacterial aggregation and microcolony formation. Intriguingly, HadA is pre- dicted to lack the typical N-terminal head domain of Oca proteins generally associated with cellular receptor binding. We propose here a structural model of the HadA coiled-coil stalk and show that the N-terminal region is still responsible of the binding activity and a KGD motif plays a role. Interestingly, HadA promotes bacterial entry into mammalian cells. Our results show a cytoskeleton re-arrangement and an involvement of clathrin in the HadA-mediated internalization. These data give new insights on the structure-function relationship of oligomeric coiled-coil adhesins and suggest a potential role of this protein in the pathogenesis of BPF

    Vaccination against Neisseria meningitidis Using Three Variants of the Lipoprotein GNA1870

    Get PDF
    Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus

    High efficacy of the MACOP-B regimen in the treatment of adult Langerhans cell histiocytosis, a 20 year experience

    Get PDF
    BACKGROUND: Adult Langerhans cell histiocytosis (LCH) is an orphan disease. Chemotherapy is usually reserved to patients presenting with single system multifocal (SS-m) or multisystem (MS) disease but due to the lack of randomized studies no standard first line therapy has been defined yet. Pediatric regimens based on the vinblastine/prednisone backbone are not well tolerated in adults and probably less effective. We previously demonstrated high efficacy of the dose dense polichemotherapy regimen MACOP-B in 7 adult patients with SS-m or MS-LCH, in terms of high response rate and durable responses. Here we report an update of these data with the purpose of evaluating the long term efficacy of MACOP-B in adult LCH. METHODS: Clinical data of all adult LCH patients (n = 17) diagnosed and treated at our Institution during the past 20-year period were retrospectively reviewed. RESULTS: A total of 11 patients (6 with SS-m and 5 with MS-LCH) were treated with MACOP-B from 1995 to 2014. The overall response rate was confirmed to be 100 %, with a complete response of 73 % and a partial response rate of 27 %. Overall progression free survival was 64 %, and disease free survival after achievement of initial CR was 87 %. Overall survival rate was 82 % after 6.7 years of median follow-up. CONCLUSIONS: These data confirm high activity of MACOP-B in adult LCH, indicating that a substantial fraction of patients achieve long lasting responses and can be cured with this therapeutic approach

    Mapping of the Neisseria meningitidis NadA Cell-Binding Site: Relevance of Predicted α-Helices in the NH2-Terminal and Dimeric Coiled-Coil Regions▿

    No full text
    NadA is a trimeric autotransporter protein of Neisseria meningitidis belonging to the group of oligomeric coiled-coil adhesins. It is implicated in the colonization of the human upper respiratory tract by hypervirulent serogroup B N. meningitidis strains and is part of a multiantigen anti-serogroup B vaccine. Structure prediction indicates that NadA is made by a COOH-terminal membrane anchor (also necessary for autotranslocation to the bacterial surface), an intermediate elongated coiled-coil-rich stalk, and an NH2-terminal region involved in cell interaction. Electron microscopy analysis and structure prediction suggest that the apical region of NadA forms a compact and globular domain. Deletion studies proved that the NH2-terminal sequence (residues 24 to 87) is necessary for cell adhesion. In this study, to better define the NadA cell binding site, we exploited (i) a panel of NadA mutants lacking sequences along the coiled-coil stalk and (ii) several oligoclonal rabbit antibodies, and their relative Fab fragments, directed to linear epitopes distributed along the NadA ectodomain. We identified two critical regions for the NadA-cell receptor interaction with Chang cells: the NH2 globular head domain and the NH2 dimeric intrachain coiled-coil α-helices stemming from the stalk. This raises the importance of different modules within the predicted NadA structure. The identification of linear epitopes involved in receptor binding that are able to induce interfering antibodies reinforces the importance of NadA as a vaccine antigen

    Neisseria meningitidis subverts the polarized organization and intracellular trafficking of host cells to cross the epithelial barrier

    Get PDF
    Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis-targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity

    rNadA intracellular distribution is affected by ARF6.

    No full text
    <p>Chang cells were transfected in order to overexpress wild type ARF6 (ARF6-wt) or dominant-negative ARF6 (ARF6-Q67L) and then incubated overnight with 200 µg/ml rNadA at 37°C. Afterwards, cells were fixed, permeabilized and double stained for rNadA (green) and ARF6 (red). Merged images are also shown. Scale bar 10 µm. Images are representative of two independent experiments.</p
    corecore