8 research outputs found

    Linkages between Water and Forests in South American Watersheds under Restoration

    Get PDF
    Water security is threatened by the rapid growth of the human population in areas where there were native forests before coupled with climate change scenarios. One of the main elements which ensures water security is water stored in soil, which is fundamental for maintaining ecohydrological processes at the watershed scale under forest land-use change. In South America, aiming to restore and recover changing catchment areas, best management practices (BMP) have been widely proposed as a strategy for water-forest resource sustainability. Based on forest evapotranspiration demand, this chapter presents fundamental concepts related to soil-water-forest cycles, watershed restoration, and case studies of BMPs in South American watersheds (e.g., Brazilian and Colombian projects for watershed conservation or restoration). It has become clear that there is an opportunity in setting baseline data and quantifying the effectiveness of these BMPs. By using ecohydrological monitoring and suitable indicators of these BMPs in the long term, an integrated understanding of water-forest relationships is needed. Furthermore, the more successful watershed management projects are, the more effective decision-making regarding BMP linking water and forests is

    Planejamento da transferência de riscos hidrológicos sob a abordagem \"severidade-duração-frequência\" da seca como uma estratégia de mitigação dos impactos das mudanças climáticas

    No full text
    Climate change and increasing water demands prioritize the need to implement planning strategies for urban water security in the long and medium term. However, risk planning requires robust and timely financial support during and after the disaster. Therefore, risk transfer tools, such as insurance, have emerged as an effective strategy to ensure financial resilience and as an element that could encourage the implementation of hydrological risk reduction mechanisms. Among the main insurance design problems are the lack of information on the real drought impacts and climate uncertainty, which may incur adverse selection and/or moral hazards among the most common drawbacks in insurance practice. Currently, most of the income from water utility companies is based on water resources management, therefore during prolonged drought periods these economies can be strongly affected, despite having robust storage schemes as support. Thus, this thesis proposes an insurance plan for the water utility company of the State of Sao Paulo (SABESP) to deal with revenue reductions during long drought periods. The methodology is implemented on the MTRH-SHS model, developed under ex-ante damage cost calculation through the risk-based approach. The synthetic (\'what-if\') approach uses a \"set of change drivers\" to estimate the optimal premium through a multiyear insurance contract (MYI). The methodology integrates the hydrological simulation procedures under radiative climate forcing scenarios RCP 4.5 and 8.5, from the regional climate model outputs Eta-HadGEM and Eta-MIROC5, with time horizons of 2007-2040, 2041-2070, and 2071-2099, linked to the Water Evaluation and Planning system (WEAP) hydrologic model and under stationary and non-stationary water supply demand assumptions. The model framework is applied to the Cantareira Water Supply System for the Sao Paulo Metropolitan Region, Brazil, with severe vulnerability to droughts. As a result, the evaluated indexes showed that multi-year contracts with drought coverage higher than 240 days offer better financial performance than contracts with wider coverages. Moreover, this MYI adopted in the installed storage residual risk generates both a higher level of solvency for the insurance fund in the long term and annual average premiums closer to the expected revenue reductions by scenario. Finally, the approach can help the systematic evaluation of moral hazards and adverse selection. In the first case, the progressive evaluation must generate useful information to change or maintain the behavior of both the insured and insurers considering future risks related to climate change. In the second case, the multi-scenario valuation can help the insurer to set price thresholds, offering risk differential cover options in the premium value.As mudanças climáticas e o incremento na demanda de água priorizam a necessidade de implementar estratégias de planejamento para a segurança hídrica urbana no longo e mediano prazo. No entanto, o planejamento dos riscos exige um suporte financeiro robusto e oportuno durante e após do desastre. Portanto, as ferramentas de transferência de risco, como os seguros, emergem como uma estratégia efetiva para garantir a resiliência financeira e como um elemento que poderia incentivar a implementação de mecanismos de redução do risco hidrológico. Entre os principais problemas no planejamento de seguros, estão a falta de informações sobre os impactos reais das secas e a incerteza climática, que podem levar a seleção adversa e/ou perigo moral como as problemáticas mais comuns na prática dos seguros. Atualmente, a maior parte da renda das empresas de serviços de água é baseada na gestão do recurso hídrico; portanto, durante períodos prolongados de seca, essas economias podem ser fortemente afetadas, apesar de ter sistemas de armazenamento robustos como suporte. Assim, esta tese propõe um plano de seguro para a empresa de serviços de água do Estado de São Paulo (SABESP), para enfrentar as reduções de receita durante longos períodos de seca. A metodologia é implementada no modelo MTRH-SHS, desenvolvido no cálculo \"ex-ante\" de custos de dano, através da abordagem baseada em risco. A abordagem sintética (\"what-if\"), usa um \"conjunto de drivers de mudança\" para estimar o prêmio ótimo através de um contrato de seguro plurianual (SPA). A metodologia integra os procedimentos de simulação hidrológica, sob cenários de forçamento climático radiativo RCP 4.5 e 8.5, do modelo de clima regional Eta-HadGEM e Eta-MIROC5, com horizontes temporais de 2007-2040, 2041-2070 e 2071-2099, vinculados ao modelo hidrológico do sistema de avaliação e planejamento da água (WEAP) e sob pressupostos de demanda como abastecimento de água estacionária e não estacionária. A estrutura do modelo é aplicada ao Sistema de Abastecimento de Água de Cantareira na Região Metropolitana de São Paulo, Brasil, região com alta vulnerabilidade às secas. Como resultado, os índices de rendimento do seguro avaliados mostraram que os contratos plurianuais com cobertura para secas superiores a 240 dias, oferecem melhor desempenho financeiro do que os contratos com coberturas mais amplas. Além, o SPA adotado para o risco residual do armazenamento instalado, gera um nível mais alto de solvência para o fundo de seguros no longo prazo com prêmios médios anuais mais próximos das reduções de receita esperadas por cenário. Finalmente, a abordagem pode ajudar na avaliação sistemática do risco moral e na seleção adversa. No primeiro caso, a avaliação progressiva deve gerar informações úteis para mudar ou manter o comportamento de segurados e seguradoras considerando riscos futuros relacionados à mudança climática. No segundo caso, a valoração de múltiplos cenários pode ajudar a estabelecer limiares de preços, oferecendo opções de cobertura diferencial de risco no valor prêmio de seguro

    Planejamento da transferência de riscos hidrológicos sob a abordagem \"severidade-duração-frequência\" da seca como uma estratégia de mitigação dos impactos das mudanças climáticas

    No full text
    Climate change and increasing water demands prioritize the need to implement planning strategies for urban water security in the long and medium term. However, risk planning requires robust and timely financial support during and after the disaster. Therefore, risk transfer tools, such as insurance, have emerged as an effective strategy to ensure financial resilience and as an element that could encourage the implementation of hydrological risk reduction mechanisms. Among the main insurance design problems are the lack of information on the real drought impacts and climate uncertainty, which may incur adverse selection and/or moral hazards among the most common drawbacks in insurance practice. Currently, most of the income from water utility companies is based on water resources management, therefore during prolonged drought periods these economies can be strongly affected, despite having robust storage schemes as support. Thus, this thesis proposes an insurance plan for the water utility company of the State of Sao Paulo (SABESP) to deal with revenue reductions during long drought periods. The methodology is implemented on the MTRH-SHS model, developed under ex-ante damage cost calculation through the risk-based approach. The synthetic (\'what-if\') approach uses a \"set of change drivers\" to estimate the optimal premium through a multiyear insurance contract (MYI). The methodology integrates the hydrological simulation procedures under radiative climate forcing scenarios RCP 4.5 and 8.5, from the regional climate model outputs Eta-HadGEM and Eta-MIROC5, with time horizons of 2007-2040, 2041-2070, and 2071-2099, linked to the Water Evaluation and Planning system (WEAP) hydrologic model and under stationary and non-stationary water supply demand assumptions. The model framework is applied to the Cantareira Water Supply System for the Sao Paulo Metropolitan Region, Brazil, with severe vulnerability to droughts. As a result, the evaluated indexes showed that multi-year contracts with drought coverage higher than 240 days offer better financial performance than contracts with wider coverages. Moreover, this MYI adopted in the installed storage residual risk generates both a higher level of solvency for the insurance fund in the long term and annual average premiums closer to the expected revenue reductions by scenario. Finally, the approach can help the systematic evaluation of moral hazards and adverse selection. In the first case, the progressive evaluation must generate useful information to change or maintain the behavior of both the insured and insurers considering future risks related to climate change. In the second case, the multi-scenario valuation can help the insurer to set price thresholds, offering risk differential cover options in the premium value.As mudanças climáticas e o incremento na demanda de água priorizam a necessidade de implementar estratégias de planejamento para a segurança hídrica urbana no longo e mediano prazo. No entanto, o planejamento dos riscos exige um suporte financeiro robusto e oportuno durante e após do desastre. Portanto, as ferramentas de transferência de risco, como os seguros, emergem como uma estratégia efetiva para garantir a resiliência financeira e como um elemento que poderia incentivar a implementação de mecanismos de redução do risco hidrológico. Entre os principais problemas no planejamento de seguros, estão a falta de informações sobre os impactos reais das secas e a incerteza climática, que podem levar a seleção adversa e/ou perigo moral como as problemáticas mais comuns na prática dos seguros. Atualmente, a maior parte da renda das empresas de serviços de água é baseada na gestão do recurso hídrico; portanto, durante períodos prolongados de seca, essas economias podem ser fortemente afetadas, apesar de ter sistemas de armazenamento robustos como suporte. Assim, esta tese propõe um plano de seguro para a empresa de serviços de água do Estado de São Paulo (SABESP), para enfrentar as reduções de receita durante longos períodos de seca. A metodologia é implementada no modelo MTRH-SHS, desenvolvido no cálculo \"ex-ante\" de custos de dano, através da abordagem baseada em risco. A abordagem sintética (\"what-if\"), usa um \"conjunto de drivers de mudança\" para estimar o prêmio ótimo através de um contrato de seguro plurianual (SPA). A metodologia integra os procedimentos de simulação hidrológica, sob cenários de forçamento climático radiativo RCP 4.5 e 8.5, do modelo de clima regional Eta-HadGEM e Eta-MIROC5, com horizontes temporais de 2007-2040, 2041-2070 e 2071-2099, vinculados ao modelo hidrológico do sistema de avaliação e planejamento da água (WEAP) e sob pressupostos de demanda como abastecimento de água estacionária e não estacionária. A estrutura do modelo é aplicada ao Sistema de Abastecimento de Água de Cantareira na Região Metropolitana de São Paulo, Brasil, região com alta vulnerabilidade às secas. Como resultado, os índices de rendimento do seguro avaliados mostraram que os contratos plurianuais com cobertura para secas superiores a 240 dias, oferecem melhor desempenho financeiro do que os contratos com coberturas mais amplas. Além, o SPA adotado para o risco residual do armazenamento instalado, gera um nível mais alto de solvência para o fundo de seguros no longo prazo com prêmios médios anuais mais próximos das reduções de receita esperadas por cenário. Finalmente, a abordagem pode ajudar na avaliação sistemática do risco moral e na seleção adversa. No primeiro caso, a avaliação progressiva deve gerar informações úteis para mudar ou manter o comportamento de segurados e seguradoras considerando riscos futuros relacionados à mudança climática. No segundo caso, a valoração de múltiplos cenários pode ajudar a estabelecer limiares de preços, oferecendo opções de cobertura diferencial de risco no valor prêmio de seguro

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore