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Abstract

Water security is threatened by the rapid growth of the human population in areas where
there were native forests before coupled with climate change scenarios. One of the main
elements which ensures water security is water stored in soil, which is fundamental for
maintaining ecohydrological processes at the watershed scale under forest land-use
change. In South America, aiming to restore and recover changing catchment areas, best
management practices (BMP) have been widely proposed as a strategy for water-forest
resource sustainability. Based on forest evapotranspiration demand, this chapter presents
fundamental concepts related to soil-water-forest cycles, watershed restoration, and case
studies of BMPs in South American watersheds (e.g., Brazilian and Colombian projects for
watershed conservation or restoration). It has become clear that there is an opportunity in
setting baseline data and quantifying the effectiveness of these BMPs. By using ecohydro-
logical monitoring and suitable indicators of these BMPs in the long term, an integrated
understanding of water-forest relationships is needed. Furthermore, the more successful
watershed management projects are, the more effective decision-making regarding BMP
linking water and forests is.
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1. Introduction

There is no life without water. Before the earliest writing systems evolved, humans were hunters

and food gatherers. Then, with the onset of the Neolithic revolution, humans started settling

alongside rivers and developed into early state civilizations, often referred to as “hydraulic

civilizations.”During the late Holocene, in Latin America, the Maya and Inca empires developed

ancient water systems based on empirical observations. Urban civilization replaced small vil-

lages with towns and cities, and agriculture progressively took the place of native forests.

However, new concerns arose in dealing with the multiple uses of water resources. On one hand,

an evolution of public and industrial water supply systems was needed for human well-being.

On the other hand, the development of such technologies, as well as other anthropogenic

impacts, made ecosystems even more vulnerable than they already were.

Since the mid-twentieth century, rapid human population growth, technological development,

and rising resource consumption have increased water pollution and scarcity. The Food and

Agriculture Organization (FAO) of the United Nations [1] estimates that there will be a need to

increase the global food production by 60% to feed more than 9 billion people foreseen to live

in the world by 2050. The human impact on Earth seems to reflect a new period in the

geological time scale: the so-called Anthropocene [2]. Waters et al. [3] summarized the key

markers of functional changes due to anthropogenic actions, which are indicative of the

Anthropocene, for example, biotic changes, which include species invasions and accelerated

extinction. Furthermore, human-induced stressors are altering freshwater, marine, and terres-

trial ecosystems in an unparallelled way [4].

The water cycle connects the abiotic environment with the bio- and anthropospheres, thereby

leading the distribution of life on Earth [5]. In turn, freshwater ecosystems have been recog-

nized among the most threatened ecosystems in the world from at least 20 years ago [6–9]. At

least 10,000–20,000 freshwater species are already extinct or at risk, with loss rates comparable

to those of the late Pleistocene–Holocene succession. Overexploitation and habitat loss trends

are pushing Earth to the sixth mass extinction process [3]. It has been shown that 65% of

Earth’s river discharge and associated habitats are moderately to highly threatened [10].

In his pioneering work, Tansley [11] proposed the term “ecosystem,” encompassing abiotic and

biotic factors, as well as their functional and structural relationships. Moreover, terrestrial ecosys-

tems influence freshwater by moving and modifying flows through a series of ecohydrological

processes. The relationships among ecohydrological processes are strongly nonlinear (see [12–15];

also called geo-bio-hydrologic processes by [16]). This ecohydrological processes in both aquatic

and terrestrial ecosystems provide benefits for humans, which are called ecosystem services

[17, 18]. Various authors (i.e., [19–23]) have defined ecohydrological processes when relating

ecological aspects of the hydrological cycle. For example, by the time correlation of the variable

fraction of flooded areas with the duration of flood pulse can better integrate both the nutrient

cycling and the river flow as part of a local biogeochemical cycle.

In the scope of this chapter, linked to water resources, three classes of ecosystem services,

provisioning, regulating, and supporting and their links, are presented. All these types of ecosys-

tem services have been progressively damaged by anthropogenic pressures:
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• Provisioning services involve the production of renewable resources (e.g., freshwater, food,

and extraction of pharmaceutical and cosmetic products from biota; [18]).

• Regulating services are those that indicate benefits arising from regulating ecological processes

and, hence, lessen environmental change (e.g., climate regulation, water regulation throughout

attenuation of hydrologic extremes such as floods and droughts, disease control; [18, 24]).

• Supporting services are the cycles of transformation of energy and mass at ecosystems, and they

are the basis for providing other ecosystem services (such as nutrient cycles, soil formation; [18]).

Land-use/land-cover (LULC) changes due to anthropic activities are the main threats to the

ecosystem regime shifts. Unbalanced water flows, biodiversity losses, and interruption of nitro-

gen, phosphorus, and other biogeochemical cycles deplete ecosystem services on large scales

[17, 25]. Considering these significant changes, we need to understand how the ecohydrological

processes work, if we want to develop better policies on watershed management [26].

The quantity and quality of water resources of each headwater are related to geology, topog-

raphy, soil type, climate, type and amount of vegetal cover, and to the degree and type of

anthropic activity in the watershed. Watershed restoration provides a variety of goods and

services for humans and nature, including regulating water and ecosystem flows, improving

water quality, reducing sediment loads, and affecting pollination and biodiversity.

The ecosystem-based adaptation (EbA) concept emerged at the beginning of the 2010 to mitigate the

impacts of the climate change and anthropic activities. EbA means the use of biodiversity and

ecosystem services to help people adapt to the adverse effects of climate change. This concept was defined

by the Convention on Biological Diversity in the 10th Conference of the Parties [27]. Protecting

ecosystem services is essential to promote watershed-scale sustainability to decrease ecosystems´

and people’s vulnerability, as well as increase their resilience to global change impacts [28, 29].

The watersheds restoration in South America can be achieved through projects of payment for

ecosystem services (PES) since PES projects are considered a method of EbA [30].

Neither integrated quali-quantitative analysis nor combined indicators of human-ecosystem

appropriation of freshwater resources have been established in Brazilian basin plans [31, 32].

On the one hand, among these indicators, we highlight the water footprint—WF [33, 34]. It

encompasses gray, blue, and green portions of water into a unique indicator to evaluate

sustainability arising from water resource pollution and consumption. For sustainable water

allocation planning, river plans must be built based on accurate data on actual water availabil-

ity per basin, taking into account (i) water needs for humans, (ii) environmental water require-

ments, and (iii) the basin’s ability to assimilate pollution [34]. On the other hand, we suggest

the study of forest-climate-water interactions as a hydraulic analogy since changes in forest

cover can alter precipitation at regional scales [25].

2. Awater-forest interface through hydraulic analogy

To address water-forest restoration perspectives, it is worth studying the water-forest system.

It can be shown as a transpiration system which is analogously analyzed as any other closed
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system that transports fluids, for example, a pipeline. Figure 1 indicates, from a hydraulic

similarity, the energy grade line concept applied to liquid and vapor phases of the system.

Because of low velocities, velocity head is neglected due to laminar flow. Energy is required to

(1) extract water, (2) transport water through the soil, (3) transport it through the plant, (4)

vaporize water, and (5) transport water into the atmosphere. All these energy phases have

losses. In Figure 1, the change in the point-to-point energy level gives the head losses and

energy sources. Flow direction is toward the negative energy gradient. Accounting for the head

losses through the liquid phase of the transpiration process, the total frictional head loss is.

hf ¼ hs þ hr þ hx þ hl, (1)

in which h is the dissipated head with the subscripts “s,” “r,” and “x” and “l” refers to the soil,

root, xylem, and the leaf components, respectively. These subscripts will designate the same

flow components when used hereafter with other hydraulic terms. Assuming that the flow is

laminar, Darcy’s flow (qDarcy = k�h/L) and continuity equation (Q = qDarcy�a) may be applied

to each component of flow in the liquid phase. For any given hydraulic component, qDarcy is

the velocity, k is the hydraulic conductivity, L is the length toward the flow directs, a is the

cross-sectional area to the flow, and Q is the total flow rate. If the expression h = Q/a � L/k is

substituted into each component, it yields the hydraulic factors that affect transpiration in the

liquid phase.

Figure 1. Hypothetical energy grade line in the transpiration process for condition hf = Hf (adapted from [35]; Ross and

Salisbury [36]; and Stewart et al. [37]). See explanation in the text.
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hf ¼ Q �
Ls
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þ
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þ
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� �

(2)

The terms within brackets in Eq. (2) are resistance terms and could be replaced as Rs for the

soil’s resistance and Rp for the plant’s resistance, as follows:

Rs ¼
Ls
asks

(3)

Rp ¼
Lr
arkr

þ
Lx
axkx

þ
Ll
alkl

(4)

in which Rs and Rp are the equivalent hydraulic resistances of the soil and plant, respectively.

Rs is dependent on the soil moisture content and the type of soil, and Rp depends on the type

of the plant and the stage of growth that includes the extent of the root system development.

From Eq. (2), a more simplified equation is obtained:

Figure 2. The 12 major river basins in Brazil. Source: [38].
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Q ¼

hf

Rs þ Rp
, (5)

which states that the flow rate that is delivered in the liquid phase is dependent on the ratio of

the total head available and the hydraulic resistances of the soil (depending on water content)

and the plant (depending on the vegetation type and growth phase). Eq. (5) shows that the

lower the value for Rp and the more head, hf, that can be developed, the more drought

resistant the plant is.

It should be mentioned that the vertical distance between the plant-conduit and the energy

grade line (EGL) represents the pressure head because the velocity head is negligible. Further-

more, the water-forest cycle shown in Figure 2 is the key element for restoration and conser-

vation measures, such as BMPs, in different spatiotemporal scales and under several scenarios

of climate and land-use changes explained in the following sections.

3. Water resource conservation strategies for South American watersheds:

Examples from Brazilian watersheds

Brazil is the largest South American country and is the fifth largest country in the world (both

geographically and in population). It presents 87% of urban population and most of the

population lives near the Atlantic coast in the east [39]. Due to Brazil’s large area (8.5 million

km2), each region presents different meteorological patterns and biomes. Moreover, several

river basins were selected for hydropower production, representing ca. 87% of all the energy

demand in Brazil [40].

3.1. Hydrometeorological aspects of Brazilian watersheds

The hydrological and meteorological characteristics of the major Brazilian river basins, some of

them for hydropower generation, are presented in Table 1 and Figures 2 and 3.

A mixture of climate zones characterizes Brazil [41]. These climate zones can be divided into

(1) atmospheric circulation; (2) thermic regions, which are related to the monthly extreme

temperatures; and (3) categories related to droughts (Figure 3).

The Amazon river basin (3,870,000 km2) occupies around 45% of the Brazilian territory. The

mean flow in the region corresponds to 74% of the national flow in Brazil (179.516 m3/s). In

spite of its abundance of water, just a minor part of the Brazilian population lives in this region,

with a demographic density of 2.51 hab./km2 (10 times less than the national mean), and the

water demand is very reduced, as it is only 3% of the national water demand [38].

The Paraná river basin (879,873 km2), which occupies 10% of the Brazilian territory and

includes the metropolitan regions of Sao Paulo and Curitiba, represents the most economically

developed region in Brazil and has a high population density, approximately 69.7 hab./km2. It

presents the highest water resource demand in the country, near 31% of the national demand.
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River basin Drainage

area (km2)

Mean

precipitation

(mm/year)

Mean

discharge

(m3/s)

Specific

discharge

(L/s/km2)

Evapotranspiration

(mm/year)

Native

vegetation

cover (%)

Major Brazilian river basin regions

Amazon 3,870,000 2205 132,145 34.1 1128 85

East Atlantic 388,160 1018 1484 3.8 897 35

Western Northeast

Atlantic

274,300 1700 2608 9.5 1400 48

Eastern Northeast

Atlantic

286,800 1052 774 2.7 967 50

Southeast Atlantic 214,629 1401 3167 14.8 936 31

Southern Atlantic 187,552 1644 4055 21.6 962 39

Paraguay 363,446 1359 2359 6.5 1154 58

Parana 879,873 1543 11,831 13.4 1119 16

Parnaiba 333,056 1064 767 2.3 991 75

São Francisco 638,466 1003 2846 4 862 53

Tocantins-

Araguaia

920,000 1774 13,779 15 1302 53

Uruguay 274,300 1623 4103 15 1151 31

Selected strategic river basins for hydropower generation in Southeast Brazil

Cantareira 2279 1475 35 15 988 26

Emborcação 29,076 1485 456 16 991 29

Três Marias 51,576 1404 657 13 1003 20

Furnas 52,197 1484 905 17 937 19

Mascarenhas 71,649 1238 890 12 847 19

Table 1. Hydrometeorological aspects of the major Brazilian river basin regions and selected watersheds draining to

strategic reservoirs for hydropower in Southeastern Brazil.

Figure 3. The complex blend of climate zones by average annual precipitation, humidity, and temperature in Brazil.

Source: Bressiani et al. [42]. Reproduced with the permission of the authors.
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However, the mean flow in the region represents only 6.6% of the national flow [38]. This fact

reveals the imbalance in the distribution of the water resources in the country. The Amazon

region also presents the higher pluviometric index of the country, 25% higher than the national

mean. This occurs because the Amazon river basin is located in a hot and humid climate

region, classified as equatorial (Figure 3). This region is characterized by the presence of

equatorial air masses, of the continental type, by the action of the intertropical convergence

zone (ICZ), formed by the convergence of trade winds [43].

In contrast, the Atlântico Leste river basin (388,160 km2), the Atlântico Nordeste Oriental

(286,800 km2), Parnaíba (333,056 km2), and Sao Francisco (638,466 km2), present minor annual

mean precipitations, as a consequence of hot and dry climates, with sparse and irregular rains

and a mean rainfall of 500 mm per year [43].

Regarding vegetation, most of the Amazon river basin is covered by its native vegetation,

consisting of the Amazon (approximately 87% of its original cover), the “Cerrado,” or Savan-

nah (approximately 60% of the original vegetation). On the other hand, the Paraná is the basin

which presents the smallest area covered by native vegetation proportionally. In comparison to

the original area, only 18% of Savannah and 15% Atlantic Forest biomes remain. The Uruguay

(274,300 km2) and Atlântico Sudeste river basins also drastically reduced their native vegetal

cover, as shown in Table 1.

Table 1 also provides data of the drainage area of important reservoirs for the Southeast region

of Brazil. The Cantareira Water Supply System (2300 km2), hereafter referred to as the

Cantareira System, encompasses 1000 hm3 of reservoirs and is the main source of water supply

for the metropolitan region of Sao Paulo and Campinas [38]. This region (Figures 4 and 5) was

severely affected by the water crisis in 2013–2015, which brought water supply problems to the

metropolitan region of Sao Paulo and Campinas and hydroelectric power generation concerns

throughout the country [44–48].

Regarding Table 1, drainage areas of reservoirs Emborcação, Três Marias, Furnas, and Mascar-

enhas, which are essential for hydroelectric power generation, irrigation, and water supply,

have less than 30% of native forest cover [40]. The Emborcaçao reservoir is the most affected

with high deforestation rates (only 6% of the original cover remains). On the other hand, the

Cantareira System, considered with the lowest deforestation rate, only has 33% of native

Atlantic Forest, partially due to watershed restoration programs (see [29]).

3.2. Biomes in Brazil

Brazil is the country with the highest biodiversity of vegetation in the world. There are more

than 55,000 cataloged plant species of an estimated total ranging between 350,000 and 550,000

[49]. A significant part of this biodiversity is found in the Atlantic Forest, a biome that stands

out for its high levels of richness, endemism, and devastation. Despite having 20,000 species of

vascular plants [50], of which between 7000 and 8000 are endemic [51], only 11% of the

Brazilian Atlantic Forest still remains [52]. Since Brazil’s colonization, the Atlantic Forest

deforestation has narrowed the delivery of ecosystem services. This progressive devastation
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was caused by the exploration of forest resources, advancements of agricultural borders and

by coastal urbanization, as well as a zone going between 40 and 50 km into the inland [53].

The large area of Brazil encompasses six biomes. They consist of the following Brazilian

names: Amazônia, Caatinga, Cerrado, Mata Atlântica, Pampa, and Pantanal.

Figure 5. A general view of the Cantareira system region, a 2300-km2 drainage area connected to the 1000 hm3 of

reservoirs in the anthropized Atlantic Forest biome. Photo by Denise Taffarello, December 2012.

Figure 4. Watersheds of the Cantareira water supply system (left) and its position in South America (top right) and in Sao

Paulo state (bottom right).

Linkages between Water and Forests in South American Watersheds under Restoration 9



First, the Amazon rainforest is the largest forest in the world, conditioned by the humid

equatorial climate (Figure 3). It represents around 35% of the forest areas globally. However,

recent predatory agricultural practices, new acts, and decrees have (1) reduced environmental

licensing requirements, (2) suspended the ratification of indigenous lands, (3) reduced the size

of protected areas, and (4) allowed land grabbers to obtain the charters of deforested areas [54].

This has led Amazon deforestation to 17%, which makes it difficult for Brazil to fulfill the Paris

Agreement.

Second, Caatinga occurs in the Brazilian Northeast. Its vegetation is formed by palm trees

which usually grow in dry and poor (in terms of nutrients) soils. Rossato et al. [55] used

weather data from the CPTEC/INPE platform to estimate the Palmer Drought Severity Index

(PDSI) in Brazil in the 2000–2015 period and found that the PDSI achieved severe to extreme

dry scales over time in the Northeast, where the dry conditions are a socioeconomic and

environmental problem. They concluded that the PDSI is useful to assess different soil mois-

ture water conditions and design risk maps.

Third, the Cerrado, which presents diverse regions, ranging from clean fields devoid of woody

vegetation to cerradão, a dense tree formation, is also in danger [54].

Fourth, the Atlantic rainforest encompasses 35% of Brazilian’s biodiversity and boasts high

levels of species richness but also has critical rates of deforestation. Only 11–16% of the

Brazilian Atlantic Forest still remains on the coastline [51], and the hydrometeorological

patterns of the region are very different. However, the presence of humid winds from the

ocean is remarkable, and it favors vegetation development.

Fifth, the Pampa is composed of different herbaceous species, and in some areas, their envi-

ronment is integrated with several Araucaria trees, in the South region of Brazil.

Last but not least, the Pantanal is an alluvial plain influenced by rivers that drain the Upper

Paraguay basin, where it develops a fauna and flora of rare beauty and abundance. The flood

regimes are seasonal, and during the increased flows of the Paraguay river, the water chemistry

changes depending on the mineral composition of parent material, soil use, and vegetation cover.

Consequently, not only flow direction and magnitude fluxes change but also transparency, tem-

perature, and the macro-ionic composition of the water. These environmental variabilities induce

a habitat pattern that influences the composition of aquatic communities. It favors those that have

adopted strategies to exist within a specified range of environmental conditions. Karr and Chu

[56] described five dynamic environmental factors that regulate the structure and functioning of

any aquatic ecosystems shown in Figure 6. These factors can be applied to explaining, for

example, the beauty and high abundance of organisms found in the Pantanal biome.

3.3. Some Latin America projects for watershed restoration

Research has shown that degraded watersheds are related to higher poverty levels [57]. Thus,

restoration and creation of wetlands have been recommended for the development of human

populations in an integrated way [58]. Most restoration projects have multiple purposes regard-

ing the quality of the biological community and the hydrological functioning of the system.
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However, the nature of ownership in forested areas (e.g., whether private or government

property) greatly affects forest management and, consequently, affects the water yield, water

quality, and their services. In Latin America, forest plantation, that is, Eucalyptus and Pinus,

mostly occurs on private land, whereas native forests prevail in public areas. Moreover, the

Brazilian government has recently signed decrees, which potentially threat native forests, due

to political bargaining [54]. This fact is very worrisome to the risks associated with hydrolog-

ical extremes, climate/environmental changes, and losses of ecosystem services.

The most common actions to enhance hydrological services and resilience front disturbances,

which can be conducted in both private and public lands, are hydrological control, wetland

construction, denitrification barriers, biogeochemical barriers, and food web manipulation. A

successful restoration strategy, according to the Society for Ecological Restoration (2011),

consists of the steps highlighted below.

Thus, there are some initiatives in Latin America which can achieve this goal (the watershed

restoration), mainly through EbA methods.

Figure 6. The dynamic environmental components structuring ecosystem functioning. Source: Adapted from Karr and

Chu [56].
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Latin American countries were pioneers in development and implementation of PES projects
as a kind of EbA method. There is a wide range of initiatives, which apply PES on various
scales, in different contexts and with diverse specific objectives [59], serving as a general
mechanism to align economic investments in human and ecosystem welfare [60].

Previous formal PES programs began in Cauca Valley, Colombia, in the mid-1990s, where
silvopastoral practices were used in a pilot project to protect upper watersheds [61, 62]. PES
research reflects the watershed’s particularities, different topographic, soil, and climate condi-
tions, that hold a major part of the world’s unique biodiversity [63].

Costa Rica was the first country to establish a formal PES, called Programa de Pagos por Servicios

Ambientales, in 1997. There are governmental subsidies to help water users (such as hydro-
power companies) to pay land owners for benefits generated by their conservation actions in
the watersheds. In Quito (Ecuador), the water and hydropower companies pay for the
protected area’s upstream withdrawal, which is a source of a significant amount of clean water
[64]. Currently, there are EbA projects under ongoing implementation in all the 20 countries of
Latin America [63, 65]; however the freshwater PES experiences that have been developed still
act on a very small scale, contributing to the conservation and restoration of a small area
related to the total area in each country).

The first publication about ecosystem services in Latin America is from 1997: a researcher from
the National Institute for Research in the Amazon (INPA) proposed a strategy for achieving
sustainable development in rural Brazilian Amazonia, which required both short-term and
long-term measures [66]. Later, the improved strategy was proposed for the Cocibolca Lake
watershed, Nicaragua, showing four scenarios built on the Soil and Water Assessment Tool

(SWAT) model to reduce the potential of sediments and nutrient loads. Currently, various
initiatives have spread throughout Latin America, especially the platform called “Water
Funds” [60, 65], but the majority are still small scale and present failures in the forest growth
and hydrological monitoring.

3.3.1. Some Brazilian examples

The Brazilian Atlantic Forest is a biodiversity hotspot in the world and constitutes a carbon
sink. For these reasons, it offers an economical opportunity for establishing restoration or
conservation practice [67, 68]. One of these initiatives is the Atlantic Forest Restoration Pact
[69, 70], a public-private partnership with the aim to restore 150,000 km2 of forest by 2050
using native species. Another initiative was the “Produtor de Água/PCJ Project” [71]. This
project aims to stimulate actions of forest restoration, conservation of fragments, and soil
conservation practices on private properties to provide remuneration to the farmers to create
and/or maintain ecosystem services [72].

The following EbA projects are or were implemented in the five regions of Brazil:

• “Bolsa Floresta Program” (North)

• “Monte Pascoal-Pau Brasil Project” (Northeast)

Topics in Hydrometerology12



• “Manancial Vivo Program” (Central West)

• “Mina d’Água Project” (Southeast)

• “Corredores Ecológicos Chapecó-Timbó Project” (South), to quote only a few examples

There are public-private partnerships working with EbA for the restoration of watersheds
and carbon sink, as well as private companies and nongovernmental organization initiatives.
In some of these, there is support from Brazilian universities in the ecohydrological monitoring
of the projects [46, 47]. See the EbA initiatives in the Brazilian Atlantic Forest developed until
2015. You can find more details on these and more initiatives in the paper by Taffarello et al. [29]
(Table 2).

Starting

year

Number

of cases

Project’s total

area (km2)

Investment

value

(million US

$)

Average payment

value per project

(US$/ha/year)

Adaptive measures considered for long-

term changes

1997 1 0.5 1.4 77–254 No

2005 1 28.5 (by 2011) 2.986 77.5 UFEX
(March/2010)

Yes. Monitoring partnership with Esalq-
USP, EESC-USP, IAG-USP, and Viçosa
Federal University
Fiscal Unit of Extrema municipality (UFEX
in Portuguese) (1 UFEX = USD 0.70 in 2018)

2006 3 20.9; 1640; 14.8 1.112 33–242 Partially. Vegetation, hydrographic, and
property management monitoring occur in
the Oasis Project

2008 1 32.3 2.846 88 No. The Bolsa Verde operations manual (IEF,
2010) does not mention monitoring

2009 8 12.48; 36.77; 1.12;
22.22; 19.62;
10.00; 0.41; 31.99

14.828 4.4–968 Yes. The Camboriu Project and Water
Producer/PCJ (EESC-USP), through water
quantity (rainfall and runoff measures);
water quality (turbidity, total suspended
solids, pH, dissolved oxygen, electrical
conductivity, organic matter, and nutrients
such as ammonia, nitrogen, nitrates, and
total phosphates); hydrologic health
(geomorphologic analyses of the water
bodies’ structure)

2010 4 0.39; 11.6; 11,000;
8.8

3768 17.79–633.43 Partially. Mina d’Água: monitoring plan and
impact assessment developed with the
support of specialists from the World Bank

2012 1 Priority areas of
the town for
public supply

25 UFM
1 UFM = US$ 46,62

No

Source: Adapted from [29].

Table 2. Case studies of EbA projects for watershed restoration at the Brazilian Atlantic Forest.
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Current research has been developed to improve existing methodologies and market-based

policy tools to identify the generation and maintenance of the ecosystem services by the

watershed restoration [73, 74].

The potential provision of the ecosystem hydrological services depends on the equilibrium of

the hydric balance, namely, the relation between the hydric availability and demand (variable

given natural oscillations or induced by impacts from anthropic activities), besides the state and

functional distribution of the ecosystems on the watersheds. From this interaction, the composition

“water+climate” is the principal element of sustainability [75, 76], directly influencing the

biodiversity. Therefore, the ecosystemic approach is a strategy for the integrated management

of soil, water, and biodiversity, promoting a balanced conservation and sustainable use of

natural resources.

3.3.2. Some Colombian examples

The Paramo biome is a set of neotropical alpine grassland ecosystems covering the upper

region of the northern Andes. It plays a key role in the hydrology [77–79]. It is characterized

by elevations between 3000 and 5000 miles above sea level (MASL) and a constant mean

monthly temperature with large diurnal temperature fluctuations. The precipitation patterns

in the Paramo are exceedingly complex in terms of amount and seasonality; the precipitation

varies from approximately 600 to 4400 mm from a bimodal pattern to a unimodal one

depending on the location [80]. Over the last years, these ecosystems have been strongly

impacted by human interventions and climate change [77, 81–85]. This has shown its

Water fund name Phase, stage Year

founded

Ecosystem description Conservation

target area (ha)

Bogotá, Water We are Operation 2009 Paramo system and high Andean

forests

60,000

Valle del Cauca, Water for Life and

Sustainability Foundation

Operation 2009 Some Paramo areas, high Andean

forests, and inter-Andean valleys

65,000

Medellín, Green Basin Operation 2013 High Andean forests and Paramo 22,300

Cali, Madre Agua Creation 2015 Humid forest, tropical forest, cloud

forest, and Paramo

4550

Cúcuta, Biocuenca Alliance Creation 2015 Paramo system and high Andean

forests

15,900

Cartagena Water Fund Creation 2016 Riparian wetland 138

Sierra Nevada de Santa Marta Idea and

prefeasibility

TBD Mountainous coastal system isolated

from the Andes and Paramo

TBD

Santa Marta y Ciénaga Idea and

prefeasibility

TBD TBD

Santander, Bucaramanga Idea and

prefeasibility

TBD Paramo system and high Andean

forests

TBD

Table 3. Colombian water funds description projects (modified from [86]).
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vulnerability and importance as a water supply source of some of the main cities in South

America. Therefore, initiatives, such as PES, are tools that in recent years have been

implemented in Colombia, but they are not yet common practice. Recently the Colombian

government, through law 870 of May 2017, established the payment for environmental ser-

vices and other incentives for conservation. Among the most recognized PSE implementation

projects in Colombia are the Water Funds (see Table 3), an initiative led by The Natural

Conservancy (TNC), which is currently benefiting nearly 12,295,247 million people [86]. These

Water Funds projects, which are in the operational phase, were established to benefit

populations from the Valle del Cauca (Water for Life and Sustainability Water Fund Cauca

Valley, Southwestern Colombia) and the cities of Medellin (Cuenca Verde) and Bogotá (Agua

Somos), all these with the particularity of being developed for a complex and fragile Paramo

Andean ecosystem [80]. While in the creation and feasibility phase, there are funds such as

Cucuta (Biocuenca Alliance), the Cartagena Water Fund aiming to conserve the riparian

wetland areas and the Sierra Nevada de Santa Marta Fund, a mountainous coastal system

isolated from the Andes, and Santander, designed for water conservation in the metropolitan

area of Bucaramanga with major conflicts over mining exploitation in the Paramo area [87, 88].

4. Conclusions

Relationships between water and forests depend on the soil characteristics, including mois-

ture dynamics, which in turn impacts the water security and overall sustainability of water

resource management. As a result of the interaction among soil, water cycles, forest, and

climate, we address further parameters and guidance for the conservation of the hydrologic

and forest resources in the watersheds. In this chapter, we discussed ecohydrological processes

and the associated ecosystem services provided by the catchments and promising opportuni-

ties for watershed restoration. In this context, we argue that EbA strategies can help to develop

the economy of Latin American countries, where the population is expected to increase more

and more over the next few years. Such strategies would require the creation or expansion of

markets for ecosystem services, hydrologic and forest participative monitoring (e.g., through

hydrosociology and citizen science), human resource development, and training. Thus, linking

water and vegetation is essential to secure diverse hydrometeorological services and the

resilience of the biodiversity hotspots. In South America’s biomes, these services can be used

to optimize annual costs and benefits of conservation and provide financial support for resto-

ration projects in most affected communities. Not only South American society’s demands, but

also environmental needs in Latin America in general, can be achieved through holistic and

transdisciplinary PES projects, some of them briefly summarized in this chapter. The PES

initiatives can also increase income and, to a certain extent, boost employment rates and

community development. For example, the Water Funds can help comprehend the relation-

ships between water yield and forests through “research-for-action” initiatives. This integrated

management can reduce people’s and ecosystems´ vulnerability, as well as increase their

resilience to cope with global change impacts.
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