190 research outputs found

    The Role of Plea Negotiation in Modern Criminal Law

    Get PDF

    Process reconstruction from incomplete and/or inconsistent data

    Full text link
    We analyze how an action of a qubit channel (map) can be estimated from the measured data that are incomplete or even inconsistent. That is, we consider situations when measurement statistics is insufficient to determine consistent probability distributions. As a consequence either the estimation (reconstruction) of the channel completely fails or it results in an unphysical channel (i.e., the corresponding map is not completely positive). We present a regularization procedure that allows us to derive physically reasonable estimates (approximations) of quantum channels. We illustrate our procedure on specific examples and we show that the procedure can be also used for a derivation of optimal approximations of operations that are forbidden by the laws of quantum mechanics (e.g., the universal NOT gate).Comment: 9pages, 5 figure

    Informationally complete measurements and groups representation

    Full text link
    Informationally complete measurements on a quantum system allow to estimate the expectation value of any arbitrary operator by just averaging functions of the experimental outcomes. We show that such kind of measurements can be achieved through positive-operator valued measures (POVM's) related to unitary irreducible representations of a group on the Hilbert space of the system. With the help of frame theory we provide a constructive way to evaluate the data-processing function for arbitrary operators.Comment: 9 pages, no figures, IOP style. Some new references adde

    Quantifying Forearm Muscle Activity during Wrist and Finger Movements by Means of Multi-Channel Electromyography.

    Get PDF
    The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported

    Quantum reconstruction of an intense polarization squeezed optical state

    Get PDF
    We perform a reconstruction of the polarization sector of the density matrix of an intense polarization squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidistribution, we map this onto the Poincare space providing a full quantum mechanical characterization of the measured polarization state.Comment: 4 pages, 4 eps color figure

    Iterative algorithm for reconstruction of entangled states

    Get PDF
    An iterative algorithm for the reconstruction of an unknown quantum state from the results of incompatible measurements is proposed. It consists of Expectation-Maximization step followed by a unitary transformation of the eigenbasis of the density matrix. The procedure has been applied to the reconstruction of the entangled pair of photons.Comment: 4 pages, no figures, some formulations changed, a minor mistake correcte

    Genomic and personalized medicine approaches for substance use disorders (SUDs) looking at genome-wide association studies

    Get PDF
    Drug addiction, or substance use disorder (SUD), is a chronic, relapsing disorder in which compulsive drug-seeking and drug-taking behaviour persist despite serious negative consequences. Drug abuse represents a problem that deserves great attention from a social point of view, and focuses on the importance of genetic studies to help in understanding the genetic basis of addiction and its medical treatment. Despite the complexity of drug addiction disorders, and the high number of environmental variables playing a role in the onset, recurrence, and duration of the symptoms, several studies have highlighted the non-negligible role of genetics, as demonstrated by heritability and genome-wide association studies. A correlation between the relative risk of addiction to specific substances and heritability has been recently observed, suggesting that neurobiological mechanisms may be, at least in part, inherited. All these observations point towards a scenario where the core neurobiological factors of addiction, involving the reward system, impulsivity, compulsivity, stress, and anxiety response, are transmitted, and therefore, genes and mutations underlying their variation might be detected. In the last few years, the development of new and more efficient sequencing technologies has paved the way for large-scale studies in searching for genetic and epigenetic factors affecting drug addiction disorders and their treatments. These studies have been crucial to pinpoint single nucleotide polymorphisms (SNPs) in genes that affect the reaction to medical treatments. This is critically important to identify pharmacogenomic approaches for substance use disorder, such as OPRM1 SNPs and methadone required doses for maintenance treatment (MMT). Nevertheless, despite the promising results obtained by genome-wide association and pharmacogenomic studies, specific studies related to population genetics diversity are lacking, undermining the overall applicability of the preliminary findings, and thus potentially affecting the portability and the accuracy of the genetic studies. In this review, focusing on cannabis, cocaine and heroin use, we report the state-of-the-art genomics and pharmacogenomics of SUDs, and the possible future perspectives related to medical treatment response in people that ask for assistance in solving drug-related problems

    Honey bee pollen in meagre (Argyrosomus regius) juvenile diets: Effects on growth, diet digestibility, intestinal traits, and biochemical markers related to health and stress

    Get PDF
    This research aimed to evaluate the effects of the inclusion of honey bee pollen (HBP) in meagre (Argyrosoumus regius) juveniles’ diets on growth performance, diet digestibility, intestinal morphology, and immunohistochemistry. Furthermore, stress-related molecular markers and biochemical blood profile of fish were evaluated, together with mineral trace and toxic element concentration in pollen and diets. Specimens of meagre (360) of 3.34 ± 0.14 g initial body weight, were randomly allocated to twelve 500 L circular tanks (30 fish per tank). Four diets were formulated: a control diet and three experimental diets with 1%, 2.5%, and 4% of HBP inclusion. All the growth parameters and crude protein and ether extract digestibility coefficients were negatively linearly affected by increased HBP inclusion (p < 0.0001). Histology of medium intestine showed slight signs of alterations in group HPB1 and HPB2.5 compared to control. Fish from HBP4 group showed severe alterations at the intestinal mucosa level. Immunohistochemical detection of TNF-α in the medium intestine showed the presence of TNF-α+ cells in the lamina propria, which resulted in accordance with the increased level of the TNF-α protein detected by immunoblotting in the liver. This stress situation was confirmed by the increased hepatic level of HSP70 (p < 0.05) in fish fed the HBP4 diet and by the linear decrease of total serum protein levels in HBP-containing diets (p < 0.0001). These negative effects can be related to the ultrastructure of the bee pollen grain walls, which make the bioactive substances unavailable and can irritate the intestine of a carnivorous fish such as meagre

    What factors influence the rediscovery of lost tetrapod species?

    Get PDF
    We created a database of lost and rediscovered tetrapod species, identified patterns in their distribution and factors influencing rediscovery. Tetrapod species are being lost at a faster rate than they are being rediscovered, due to slowing rates of rediscovery for amphibians, birds and mammals, and rapid rates of loss for reptiles. Finding lost species and preventing future losses should therefore be a conservation priority. By comparing the taxonomic and spatial distribution of lost and rediscovered tetrapod species, we have identified regions and taxa with many lost species in comparison to those that have been rediscovered—our results may help to prioritise search effort to find them. By identifying factors that influence rediscovery, we have improved our ability to broadly distinguish the types of species that are likely to be found from those that are not (because they are likely to be extinct). Some lost species, particularly those that are small and perceived to be uncharismatic, may have been neglected in terms of conservation effort, and other lost species may be hard to find due to their intrinsic characteristics and the characteristics of the environments they occupy (e.g. nocturnal species, fossorial species and species occupying habitats that are more difficult to survey such as wetlands). These lost species may genuinely await rediscovery. However, other lost species that possess characteristics associated with rediscovery (e.g. large species) and that are also associated with factors that negatively influence rediscovery (e.g. those occupying small islands) are more likely to be extinct. Our results may foster pragmatic search protocols that prioritise lost species likely to still exist

    Schrodinger cats and their power for quantum information processing

    Get PDF
    We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.Comment: 10 pages, 5 figures; Submitted to a Special Issue of J. Opt. B on "Fluctuations and Noise in Photonics and Quantum Optics" (Herman Haus Memorial Issue
    • 

    corecore