8 research outputs found

    Voluntary Chronic Heavy Alcohol Consumption in Male Rhesus Macaques Suppresses Cancellous Bone Formation and Increases Bone Marrow Adiposity

    Get PDF
    Background Chronic heavy alcohol consumption is an established risk factor for bone fracture, but comorbidities associated with alcohol intake may contribute to increased fracture rates in alcohol abusers. To address the specific effects of alcohol on bone, we used a nonhuman primate model and evaluated voluntary alcohol consumption on: (i) global markers of bone turnover in blood and (ii) cancellous bone mass, density, microarchitecture, turnover, and microdamage in lumbar vertebra. Methods Following a 4‐month induction period, 6‐year‐old male rhesus macaques (Macaca mulatta, n = 13) voluntarily self‐administered water or ethanol (EtOH; 4% w/v) for 22 h/d, 7 d/wk, for a total of 12 months. Control animals (n = 9) consumed an isocaloric maltose–dextrin solution. Tetracycline hydrochloride was administered orally 17 and 3 days prior to sacrifice to label mineralizing bone surfaces. Global skeletal response to EtOH was evaluated by measuring plasma osteocalcin and carboxyterminal collagen cross‐links (CTX). Local response was evaluated in lumbar vertebra using dual‐energy X‐ray absorptiometry, microcomputed tomography, static and dynamic histomorphometry, and histological assessment of microdamage. Results Monkeys in the EtOH group consumed an average of 2.8 ± 0.2 (mean ± SE) g/kg/d of EtOH (30 ± 2% of total calories), resulting in an average blood EtOH concentration of 88.3 ± 8.8 mg/dl 7 hours after the session onset. Plasma CTX and osteocalcin tended to be lower in EtOH‐consuming monkeys compared to controls. Significant differences in bone mineral density in lumbar vertebrae 1 to 4 were not detected with treatment. However, cancellous bone volume fraction (in cores biopsied from the central region of the third vertebral body) was lower in EtOH‐consuming monkeys compared to controls. Furthermore, EtOH‐consuming monkeys had lower osteoblast perimeter and mineralizing perimeter, no significant difference in osteoclast perimeter, and higher bone marrow adiposity than controls. No significant differences between groups were detected in microcrack density (2nd lumbar vertebra). Conclusions Voluntary chronic heavy EtOH consumption reduces cancellous bone formation in lumbar vertebra by decreasing osteoblast‐lined bone perimeter, a response associated with an increase in bone marrow adiposity

    Regenerative Medicine and Diabetes: Targeting the Extracellular Matrix Beyond the Stem Cell Approach and Encapsulation Technology

    Get PDF
    According to the Juvenile Diabetes Research Foundation (JDRF), almost 1. 25 million people in the United States (US) have type 1 diabetes, which makes them dependent on insulin injections. Nationwide, type 2 diabetes rates have nearly doubled in the past 20 years resulting in more than 29 million American adults with diabetes and another 86 million in a pre-diabetic state. The International Diabetes Ferderation (IDF) has estimated that there will be almost 650 million adult diabetic patients worldwide at the end of the next 20 years (excluding patients over the age of 80). At this time, pancreas transplantation is the only available cure for selected patients, but it is offered only to a small percentage of them due to organ shortage and the risks linked to immunosuppressive regimes. Currently, exogenous insulin therapy is still considered to be the gold standard when managing diabetes, though stem cell biology is recognized as one of the most promising strategies for restoring endocrine pancreatic function. However, many issues remain to be solved, and there are currently no recognized treatments for diabetes based on stem cells. In addition to stem cell resesarch, several ÎČ-cell substitutive therapies have been explored in the recent era, including the use of acellular extracellular matrix scaffolding as a template for cellular seeding, thus providing an empty template to be repopulated with ÎČ-cells. Although this bioengineering approach still has to overcome important hurdles in regards to clinical application (including the origin of insulin producing cells as well as immune-related limitations), it could theoretically provide an inexhaustible source of bio-engineered pancreases

    Antibody-induced NKG2D blockade in a rat model of intraportal islet transplantation leads to a deleterious reaction

    No full text
    Intraportal islet transplantation is plagued by an acute destruction of transplanted islets. Amongst the first responders, NK cells and macrophages harbour an activating receptor, NKG2D, recognizing ligands expressed by stressed cells. We aimed to determine whether islet NKG2D ligand expression increases with culture time, and to analyse the impact of antibody-induced NKG2D blockade in islet transplantation. NKG2D-ligand expression was analysed in rat and human islets. Syngeneic marginal mass intraportal islet transplantations were performed in rats: control group, recipients transplanted with NKG2D-recombinant-treated islets (recombinant group), and recipients treated with a mouse anti-rat anti-NKG2D antibody and transplanted with recombinant-treated islets (antibody-recombinant group). Islets demonstrated increased gene expression of NKG2D ligands with culture time. Blockade of NKG2D on NK cells decreased in vitro cytotoxicity against islets. Recipients from the control and recombinant groups showed similar metabolic results; conversely, treatment with the antibody resulted in lower diabetes reversal. The antibody depleted circulating and liver NK cells in recipients, who displayed increased macrophage infiltration of recipient origin around the transplanted islets. In vitro blockade of NKG2D ligands had no impact on early graft function. Systemic treatment of recipients with an anti-NKG2D antibody was deleterious to the islet graft, possibly through an antibody-dependent cell-mediated cytotoxicity reaction

    Effects of remote ischaemic preconditioning on intraportal islet transplantation in a rat model

    No full text
    Remote ischaemic preconditioning (RIPC), which is the intermittent interruption of blood flow to a site distant from the target organ, is known to improve solid organ resistance to ischaemia-reperfusion injury. This procedure could be of interest in islet transplantation to mitigate hypoxia-related loss of islet mass after isolation and transplantation. Islets isolated from control or RIPC donors were analyzed for yield, metabolic activity, gene expression and high mobility group box-1 (HMGB1) content. Syngeneic marginal mass transplantation was performed in four streptozotocin-induced diabetic groups: control, RIPC in donor only, RIPC in recipient only, and RIPC in donor and recipient. Islets isolated from RIPC donors had an increased yield of 20% after 24 h of culture compared to control donors (P = 0.007), linked to less cell death (P = 0.08), decreased expression of hypoxia-related genes (Hif1a P = 0.04; IRP94 P = 0.008), and increased intra-cellular (P = 0.04) and nuclear HMGB1. The use of RIPC in recipients only did not allow for reversal of diabetes, with increased serum HMGB1 at day 1; the three other groups demonstrated significantly better outcomes. Performing RIPC in the donors increases islet yield and resistance to hypoxia. Validation is needed, but this strategy could help to decrease the number of donors per islet recipient

    Polyethylene particles inserted over calvarium induce cancellous bone loss in femur in female mice

    No full text
    Focal bone resorption (osteolysis) induced by wear particles contributes to long-term orthopedic joint failure. However, the impact of focal osteolysis on remote skeletal sites has received less attention. The goal of this study was to determine the effects of polyethylene particles placed over calvaria on representative axial and appendicular skeletal sites in female mice. Because recent work has identified housing temperature as an important biological variable in mice, response to particle treatment was measured in animals housed at room (22 °C) and thermoneutral (32 °C) temperature. Osteolysis was evident in skeletal tissue adjacent to particle insertion. In addition, cancellous bone loss was observed in distal femur metaphysis. The bone loss was associated with lower osteoblast-lined perimeter and lower mineralizing perimeter in distal femur, lower osteocalcin gene expression in tibia, and lower serum osteocalcin, suggesting the response was due, at least in part, to reduced bone formation. Mild cold stress induced by sub-thermoneutral housing resulted in cancellous bone loss in distal femur and lumbar vertebra but did not influence skeletal response to particles. In summary, the results indicate that focal inflammation induced by polyethylene particles has the potential to result in systemic bone loss. This is significant because bone loss is a risk factor for fracture. Keywords: Osteolysis, Bone resorption, Bone formation, Osteoporosi

    Regenerative Medicine and Diabetes: Targeting the Extracellular Matrix Beyond the Stem Cell Approach and Encapsulation Technology

    No full text
    According to the Juvenile Diabetes Research Foundation (JDRF), almost 1. 25 million people in the United States (US) have type 1 diabetes, which makes them dependent on insulin injections. Nationwide, type 2 diabetes rates have nearly doubled in the past 20 years resulting in more than 29 million American adults with diabetes and another 86 million in a pre-diabetic state. The International Diabetes Ferderation (IDF) has estimated that there will be almost 650 million adult diabetic patients worldwide at the end of the next 20 years (excluding patients over the age of 80). At this time, pancreas transplantation is the only available cure for selected patients, but it is offered only to a small percentage of them due to organ shortage and the risks linked to immunosuppressive regimes. Currently, exogenous insulin therapy is still considered to be the gold standard when managing diabetes, though stem cell biology is recognized as one of the most promising strategies for restoring endocrine pancreatic function. However, many issues remain to be solved, and there are currently no recognized treatments for diabetes based on stem cells. In addition to stem cell resesarch, several ÎČ-cell substitutive therapies have been explored in the recent era, including the use of acellular extracellular matrix scaffolding as a template for cellular seeding, thus providing an empty template to be repopulated with ÎČ-cells. Although this bioengineering approach still has to overcome important hurdles in regards to clinical application (including the origin of insulin producing cells as well as immune-related limitations), it could theoretically provide an inexhaustible source of bio-engineered pancreases
    corecore