24 research outputs found

    BOOL-AN: A method for comparative sequence analysis and phylogenetic reconstruction

    Get PDF
    A novel discrete mathematical approach is proposed as an additional tool for molecular systematics which does not require prior statistical assumptions concerning the evolutionary process. The method is based on algorithms generating mathematical representations directly from DNA/RNA or protein sequences, followed by the output of numerical (scalar or vector) and visual characteristics (graphs). The binary encoded sequence information is transformed into a compact analytical form, called the Iterative Canonical Form (or ICF) of Boolean functions, which can then be used as a generalized molecular descriptor. The method provides raw vector data for calculating different distance matrices, which in turn can be analyzed by neighbor-joining or UPGMA to derive a phylogenetic tree, or by principal coordinates analysis to get an ordination scattergram. The new method and the associated software for inferring phylogenetic trees are called the Boolean analysis or BOOL-AN

    Starvation-response may not involve Atg1-dependent autophagy induction in non-unikont parasites

    Get PDF
    Autophagy, the lysosome-mediated self-degradation process, is implicated in survival during starvation in yeast, Dictyostelium and animals. In these eukaryotic taxa (collectively called Unikonts), autophagy is induced primarily through the Atg1/ULK1 complex in response to nutrient depletion. Autophagy has also been well-studied in non-unikont parasites, such as Trypanosoma and Plasmodium, and found important in their life-cycle transitions. However, how autophagy is induced in non-unikonts remains largely unrevealed. Using a bioinformatics approach, we examined the presence of Atg1 and of its complex in the genomes of 40 non-unikonts. We found that these genomes do not encode typical Atg1 proteins: BLAST and HMMER queries matched only with the kinase domain of Atg1, while other segments responsible for regulation and protein-binding were missing. Non-unikonts also lacked other components of the Atg1-inducing complex. Orthologs of an alternative autophagy inducer, Atg6 were found only in the half of the species, indicating that the other half may possess other inducing mechanisms. As key autophagy genes have differential expression patterns during life-cycle, we raise the possibility that autophagy in these protists is induced mainly at the post-transcriptional level. Understanding Atg1-independent autophagy induction mechanisms in these parasites may lead to novel pharmacological interventions, not affecting human Atg1-dependent autophagy

    Discovering cooperative biomarkers for heterogeneous complex disease diagnoses

    Get PDF
    Biomarkers with high reproducibility and accurate prediction performance can contribute to comprehending the underlying pathogenesis of related complex diseases and further facilitate disease diagnosis and therapy. Techniques integrating gene expression profiles and biological networks for the identification of network-based disease biomarkers are receiving increasing interest. The biomarkers for heterogeneous diseases often exhibit strong cooperative effects, which implies that a set of genes may achieve more accurate outcome prediction than any single gene. In this study, we evaluated various biomarker identification methods that consider gene cooperative effects implicitly or explicitly, and proposed the gene cooperation network to explicitly model the cooperative effects of gene combinations. The gene cooperation network- enhanced method, named as MarkRank, achieves superior performance compared with traditional biomarker identification methods in both simulation studies and real data sets. The biomarkers identified by MarkRank not only have a better prediction accuracy but also have stronger topological relationships in the biological network and exhibit high specificity associated with the related diseases. Furthermore, the top genes identified by MarkRank involve crucial biological processes of related diseases and give a good prioritization for known disease genes. In conclusion, MarkRank suggests that explicit modeling of gene cooperative effects can greatly improve biomarker identification for complex diseases, especially for diseases with high heterogeneity

    A Single Early Introduction Governed Viral Diversity in the Second Wave of SARS-CoV-2 Epidemic in Hungary

    Get PDF
    Retrospective evaluation of past waves of the SARS-CoV-2 epidemic is key for designing optimal interventions against future waves and novel pandemics. Here we report on analysing genome sequences of SARS-CoV-2 from the first two waves of the epidemic in 2020 in Hungary, mirroring a suppression and a mitigation strategy, respectively. Our analysis reveals that the two waves markedly differed in viral diversity and transmission patterns. Specifically, unlike in several European areas or in the USA, we have found no evidence for early introduction and cryptic transmission of the virus in the first wave of the pandemic in Hungary. Despite the introduction of multiple viral lineages, extensive community spread was prevented by a timely national lockdown in March 2020. In sharp contrast, the majority of the cases in the much larger second wave can be linked to a single transmission lineage of the pan-European B.1.160 variant. This lineage was introduced unexpectedly early, followed by a two-month-long cryptic transmission before a soar of detected cases in September 2020. Epidemic analysis has revealed that the dominance of this lineage in the second wave was not associated with an intrinsic transmission advantage. This finding is further supported by the rapid replacement of B.1.160 by the alpha variant (B.1.1.7) that launched the third wave of the epidemic in February 2021. Overall, these results illustrate how the founder effect in combination with cryptic transmission, instead of repeated international introductions or higher transmissibility, can govern viral diversity

    A Single Early Introduction Governed Viral Diversity in the Second Wave of SARS-CoV-2 Epidemic in Hungary

    Get PDF
    Retrospective evaluation of past waves of the SARS-CoV-2 epidemic is key for designing optimal interventions against future waves and novel pandemics. Here we report on analysing genome sequences of SARS-CoV-2 from the first two waves of the epidemic in 2020 in Hungary, mirroring a suppression and a mitigation strategy, respectively. Our analysis reveals that the two waves markedly differed in viral diversity and transmission patterns. Specifically, unlike in several European areas or in the USA, we have found no evidence for early introduction and cryptic transmission of the virus in the first wave of the pandemic in Hungary. Despite the introduction of multiple viral lineages, extensive community spread was prevented by a timely national lockdown in March 2020. In sharp contrast, the majority of the cases in the much larger second wave can be linked to a single transmission lineage of the pan-European B.1.160 variant. This lineage was introduced unexpectedly early, followed by a two-month-long cryptic transmission before a soar of detected cases in September 2020. Epidemic analysis has revealed that the dominance of this lineage in the second wave was not associated with an intrinsic transmission advantage. This finding is further supported by the rapid replacement of B.1.160 by the alpha variant (B.1.1.7) that launched the third wave of the epidemic in February 2021. Overall, these results illustrate how the founder effect in combination with cryptic transmission, instead of repeated international introductions or higher transmissibility, can govern viral diversity
    corecore