17 research outputs found

    Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?

    Get PDF
    • Central fatigue is accepted as a contributor to overall athletic performance, yet little research directly investigates post-exercise recovery strategies targeting the brain • Current post-exercise recovery strategies likely impact on the brain through a range of mechanisms, but improvements to these strategies is needed • Research is required to optimize post-exercise recovery with a focus on the brain Post-exercise recovery has largely focused on peripheral mechanisms of fatigue, but there is growing acceptance that fatigue is also contributed to through central mechanisms which demands that attention should be paid to optimizing recovery of the brain. In this narrative review we assemble evidence for the role that many currently utilized recovery strategies may have on the brain, as well as potential mechanisms for their action. The review provides discussion of how common nutritional strategies as well as physical modalities and methods to reduce mental fatigue are likely to interact with the brain, and offer an opportunity for subsequent improved performance. We aim to highlight the fact that many recovery strategies have been designed with the periphery in mind, and that refinement of current methods are likely to provide improvements in minimizing brain fatigue. Whilst we offer a number of recommendations, it is evident that there are many opportunities for improving the research, and practical guidelines in this area

    Assessing the variation in the load that produces maximal upper-body power

    Get PDF
    Substantial variation in the load that produces maximal power has been reported. It has been suggested that the variation observed may be due to differences in subject physical characteristics. Therefore the aim of this study was to determine the extent in which anthropometric measures correlate to the load that produces maximal power. Anthropometric measures (upper-arm length, forearm length, total arm length, upper-arm girth) and bench press strength were assessed in 26 professional rugby union players. Peak power was then determined in the bench press throw exercise using loads of 20 to 60% of one repetition maximum (1RM) in the bench press exercise. Maximal power occurred at 30 +/- 14 %1RM (mean +/- SD). Upper-arm length had the highest correlation with the load maximizing power: -0.61 (90% confidence limits -0.35 to -0.78), implying loads of 22 vs. 38 %1RM maximize power for players with typically long vs. short upper-arm length. Correlations for forearm length, total arm length and upper-arm girth to the load that maximized power were -0.29 (0.04 to -0.57), -0.56 (-0.28 to -0.75), and -0.29 (0.04 to -0.57), respectively. The relationship between 1RM and the load that produced maximal power was r = -0.23 (0.10 to -0.52). The between-subject variation in the load that maximised power observed (SD= +/- 14 %1RM) may have been due to differences in anthropometric characteristics, and absolute strength and power outputs. Indeed, athletes with longer limbs and larger girths, and greater maximal strength and power outputs utilised a lower percentage of 1RM loads to achieve maximum power. Therefore, we recommend individual assessment of the load that maximizes power output

    Assessing lower-body peak power in elite rugby-union players

    Get PDF

    Reliability of a 2-Bout exercise test on a Wattbike cycle ergometer

    Get PDF
    Purpose: To determine the intraday and interday reliability of a 2 × 4-min performance test on a cycle ergometer (Wattbike) separated by 30 min of passive recovery (2 × 4MMP). Methods: Twelve highly trained cyclists (mean ± SD; age = 20 ± 2 y, predicted VO2max = 59.0 ± 3.6 mL · kg–1 · min–1) completed six 2 × 4MMP cycling tests on a Wattbike ergometer separated by 7 d. Mean power was measured to determine intraday (test 1 [T1] to test 2 [T2]) and interday reliability (weeks 1–6) over the repeated trials. Results: The mean intraday reliabilities of the 2 × 4MMP test, as expressed by the typical error of measurement (TEM, W) and coefficient of variation (CV, %) over the 6 wk, were 10.0 W (95% confidence limits [CL] 8.2–11.8), and 2.6% (95%CL 2.1–3.1), respectively. The mean interday reliability TEM and CV for T1 over the 6 wk were 10.4 W (95%CL 8.7–13.3) and 2.7% (95%CL 2.3–3.5), respectively, and 11.7 W (95%CL 9.8–15.1) and 3.0% (95%CL 2.5–3.9) for T2. Conclusion: The testing protocol performed on a Wattbike cycle ergometer in the current study is reproducible in highly trained cyclists. The high intraday and interday reliability make it a reliable method for monitoring cycling performance and for investigating factors that affect performance in cycling events

    Age-related changes in performance and recovery kinetics in masters athletes: A narrative review

    Get PDF
    Despite increasing participation rates in masters sport and extensive research examining age-related changes in performance, little is known about the effect of age on recovery kinetics in masters athletes. This narrative review focuses on the relationship between aging and sport participation, and the effect on both performance and recovery following an exercise bout. Current research suggests the effect of age on performance and recovery may be smaller than originally suggested and that increasing sedentary lifestyles appear to play a larger role in any observed decrements in performance and recovery in masters athletes. Currently, it appears that performance decrements are inevitable with age. However, performance capacities can be maintained through systematic physical training. Moreover, the limited current research suggests there may be an age effect on recovery kinetics following an exercise bout, although further research is required to understand the acute and chronic recovery processes in the masters athlete

    Sleep and performance during a preseason in elite rugby union athletes

    Get PDF
    BACKGROUND: Preseason training optimises adaptations in the physical qualities required in rugby union athletes. Sleep can be compromised during periods of intensified training. Therefore, we investigated the relationship between sleep quantity and changes in physical performance over a preseason phase in professional rugby union athletes. METHODS: Twenty-nine professional rugby union athletes (Mean ± SD, age: 23 ± 3 years) had their sleep duration monitored for 3 weeks using wrist actigraphy. Strength and speed were assessed at baseline and at week 3. Aerobic capacity and body composition were assessed at baseline, at week 3 and at week 5. Participants were stratified into 2 groups for analysis: 7 h 30 min sleep per night (HIGH, n = 14). RESULTS: A significant group x time interaction was determined for aerobic capacity (p = 0.02, d = 1.25) at week 3 and for skinfolds at week 3 (p < 0.01, d = 0.58) and at week 5 (p = 0.02, d = 0.92), in favour of the HIGH sleep group. No differences were evident between groups for strength or speed measures (p ≥ 0.05). CONCLUSION: This study highlights that longer sleep duration during the preseason may assist in enhancing physical qualities including aerobic capacity and body composition in elite rugby union athletes

    Autonomic cardiovascular modulation in masters and young cyclists following high-intensity interval training

    No full text
    Purpose: This study aimed at examining the autonomic cardiovascular modulation in well-trained masters and young cyclists following high-intensity interval training (HIT). Methods: Nine masters (age 55.6 ± 5.0 years) and eight young cyclists (age 25.9 ± 3.0 years) completed a HIT protocol of 6 x 30 sec at 175% of peak power output, with 4.5-min’ rest between efforts. Immediately following HIT, heart rate and R–R intervals were monitored for 30-min during passive supine recovery. Autonomic modulation was examined by i) heart rate recovery in the first 60-sec of recovery (HRR<sub>60</sub>); ii) the time constant of the 30-min heart rate recovery curve (HRRτ); iii) the time course of the root mean square for successive 30-sec R–R interval (RMSSD<sub>30</sub>); and iv) time and frequency domain analyses of subsequent 5-min R–R interval segments. Results: No significant between-group differences were observed for HRR<sub>60</sub> (<i>P</i> = 0.096) or HRRτ (<i>P</i> = 0.617). However, a significant interaction effect was found for RMSSD<sub>30</sub> (<i>P</i> = 0.021), with the master cyclists showing higher RMSSD<sub>30</sub> values following HIT. Similar results were observed in the time and frequency domain analyses with significant interaction effects found for the natural logarithm of the RMSSD (<i>P</i> = 0.008), normalised low-frequency power (<i>P</i> = 0.016) and natural logarithm of high-frequency power (<i>P</i> = 0.012). Conclusion: Following high-intensity interval training, master cyclists demonstrated greater post-exercise parasympathetic reactivation compared to young cyclists, indicating that physical training at older ages has significant effects on autonomic function

    The effect of initial knee angle on oncentric-only squat jump performance

    No full text
    Purpose: There is uncertainty as to which knee angle during a squat jump (SJ) produces maximal jump performance. Importantly, understanding this information will aid in determining appropriate ratios for assessment and monitoring of the explosive characteristics of athletes. Method: This study compared SJ performance across different knee angles—90º, 100º, 110º, 120º, 130º, and a self-selected depth—for jump height and other kinetic characteristics. For comparison between SJ and an unconstrained dynamic movement, participants also performed a countermovement jump from a self-selected depth. Thirteen participants (Mage = 25.4 ± 3.5 years, Mheight = 1.8 ± 0.06 m, Mweight = 79.8 ± 9.5 kg) were recruited and tested for their SJ performance. Results: In the SJ, maximal jump height (35.4 ± 4.6 cm) was produced using a self-selected knee angle (98.7 ± 11.2°). Differences between 90°, 100°, and self-selected knee angles for jump height were trivial (ES ± 90% CL = 90°–100° 0.23 ± 0.12, 90°–SS −0.04 ± 0.12, 100°–SS −0.27 ± 0.20; 0.5–2.4 cm) and not statistically different. Differences between all other knee angles for jump height ranged from 3.8 ± 2.0 cm (mean ± 90% CL) to 16.6 ± 2.2 cm. A similar outcome to jump height was observed for velocity, force relative to body weight, and impulse for the assessed knee angles. Conclusions: For young physically active adult men, the use of a self-selected depth in the SJ results in optimal performance and has only a trivial difference to a constrained knee angle of either 90° or 100
    corecore