4,780 research outputs found

    Is the Riemann zeta function in a short interval a 1-RSB spin glass ?

    Full text link
    Fyodorov, Hiary & Keating established an intriguing connection between the maxima of log-correlated processes and the ones of the Riemann zeta function on a short interval of the critical line. In particular, they suggest that the analogue of the free energy of the Riemann zeta function is identical to the one of the Random Energy Model in spin glasses. In this paper, the connection between spin glasses and the Riemann zeta function is explored further. We study a random model of the Riemann zeta function and show that its two-overlap distribution corresponds to the one of a one-step replica symmetry breaking (1-RSB) spin glass. This provides evidence that the local maxima of the zeta function are strongly clustered.Comment: 20 pages, 1 figure, Minor corrections, References update

    Stochastic Stability: a Review and Some Perspectives

    Full text link
    A review of the stochastic stability property for the Gaussian spin glass models is presented and some perspectives discussed.Comment: 12 pages, typos corrected, references added. To appear in Journal of Statistical Physics, Special Issue for the 100th Statistical Mechanics Meetin

    Short-range spin glasses and Random Overlap Structures

    Full text link
    Properties of Random Overlap Structures (ROSt)'s constructed from the Edwards-Anderson (EA) Spin Glass model on Zd\Z^d with periodic boundary conditions are studied. ROSt's are N×N\N\times\N random matrices whose entries are the overlaps of spin configurations sampled from the Gibbs measure. Since the ROSt construction is the same for mean-field models (like the Sherrington-Kirkpatrick model) as for short-range ones (like the EA model), the setup is a good common ground to study the effect of dimensionality on the properties of the Gibbs measure. In this spirit, it is shown, using translation invariance, that the ROSt of the EA model possesses a local stability that is stronger than stochastic stability, a property known to hold at almost all temperatures in many spin glass models with Gaussian couplings. This fact is used to prove stochastic stability for the EA spin glass at all temperatures and for a wide range of coupling distributions. On the way, a theorem of Newman and Stein about the pure state decomposition of the EA model is recovered and extended.Comment: 27 page

    Universal crossing probability in anisotropic systems

    Full text link
    Scale-invariant universal crossing probabilities are studied for critical anisotropic systems in two dimensions. For weakly anisotropic standard percolation in a rectangular-shaped system, Cardy's exact formula is generalized using a length-rescaling procedure. For strongly anisotropic systems in 1+1 dimensions, exact results are obtained for the random walk with absorbing boundary conditions, which can be considered as a linearized mean-field approximation for directed percolation. The bond and site directed percolation problem is itself studied numerically via Monte Carlo simulations on the diagonal square lattice with either free or periodic boundary conditions. A scale-invariant critical crossing probability is still obtained, which is a universal function of the effective aspect ratio r_eff=c r where r=L/t^z, z is the dynamical exponent and c is a non-universal amplitude.Comment: 7 pages, 4 figure

    A unified stability property in spin glasses

    Full text link
    Gibbs' measures in the Sherrington-Kirkpatrick type models satisfy two asymptotic stability properties, the Aizenman-Contucci stochastic stability and the Ghirlanda-Guerra identities, which play a fundamental role in our current understanding of these models. In this paper we show that one can combine these two properties very naturally into one unified stability property

    Two-Parton Contribution to the Heavy-Quark Forward-Backward Asymmetry in NNLO QCD

    Full text link
    Forward-backward asymmetries, AFBQA_{FB}^Q, are important observables for the determination of the neutral-current couplings of heavy quarks in inclusive heavy quark production, e+e−→γ∗,Z∗→Q+Xe^+ e^- \to \gamma^*, Z^* \to Q +X. In view of the measurement perspectives on AFBQA_{FB}^Q at a future linear collider, precise predictions of AFBQA_{FB}^Q are required for massive quarks. We compute the contribution of the QQˉQ \bar Q final state to AFBQA_{FB}^Q to order \as^2 in the QCD coupling. We provide general formulae, and we show that this contribution to AFBQA_{FB}^Q is infrared-finite. We evaluate these two-parton contributions for bb and cc quarks on and near the ZZ resonance, and for tt quarks above threshold. Moreover, near the ttˉt \bar t threshold we obtain, by expanding in the heavy-quark velocity β\beta, an expression for AFBttˉA_{FB}^{t \bar t} to order \as^2 and NNLL in β\beta. This quantity is equal, to this order in β\beta, to the complete forward-backward asymmetry AFBtA_{FB}^t.Comment: latex, 26 pages, 2 tables, 17 figure

    On the distribution of maximum value of the characteristic polynomial of GUE random matrices

    Get PDF
    Motivated by recently discovered relations between logarithmically correlated Gaussian processes and characteristic polynomials of large random N×N matrices H from the Gaussian Unitary Ensemble (GUE), we consider the problem of characterising the distribution of the global maximum of DN(x):=−log|det(xI−H)| as N→∞ and x∈(−1,1). We arrive at an explicit expression for the asymptotic probability density of the (appropriately shifted) maximum by combining the rigorous Fisher-Hartwig asymptotics due to Krasovsky \cite{K07} with the heuristic {\it freezing transition} scenario for logarithmically correlated processes. Although the general idea behind the method is the same as for the earlier considered case of the Circular Unitary Ensemble, the present GUE case poses new challenges. In particular we show how the conjectured {\it self-duality} in the freezing scenario plays the crucial role in our selection of the form of the maximum distribution. Finally, we demonstrate a good agreement of the found probability density with the results of direct numerical simulations of the maxima of DN(x)

    Interpolating the Sherrington-Kirkpatrick replica trick

    Full text link
    The interpolation techniques have become, in the past decades, a powerful approach to lighten several properties of spin glasses within a simple mathematical framework. Intrinsically, for their construction, these schemes were naturally implemented into the cavity field technique, or its variants as the stochastic stability or the random overlap structures. However the first and most famous approach to mean field statistical mechanics with quenched disorder is the replica trick. Among the models where these methods have been used (namely, dealing with frustration and complexity), probably the best known is the Sherrington-Kirkpatrick spin glass: In this paper we are pleased to apply the interpolation scheme to the replica trick framework and test it directly to the cited paradigmatic model: interestingly this allows to obtain easily the replica-symmetric control and, synergically with the broken replica bounds, a description of the full RSB scenario, both coupled with several minor theorems. Furthermore, by treating the amount of replicas n∈(0,1]n\in(0,1] as an interpolating parameter (far from its original interpretation) this can be though of as a quenching temperature close to the one introduce in off-equilibrium approaches and, within this viewpoint, the proof of the attended commutativity of the zero replica and the infinite volume limits can be obtained.Comment: This article is dedicated to David Sherrington on the occasion of his seventieth birthda
    • …
    corecore