18 research outputs found

    Direct Ground Cooling Systems for Office Buildings

    Get PDF
    The solving of crucial global energy challenges hinges on improving energy efficiency in building energy systems. Accomplishing energy-efficiency targets often entails incorporating sustainable energy sources into the energy supply system. Direct ground cooling systems (DGCSs) are among the most sustainable technologies for comfort cooling in office buildings. With this technology, cooling is provided by the circulation of the working fluid through the ground heat exchangers. This technology is mostly used in cold climates where the underground temperature is low, and the building cooling loads are low enough to be offset by the ground cooling. Using only a modest amount of electricity to drive the circulation pumps, this technology is incredibly energy efficient. However, designing DGCSs presents some unique challenges, and only a handful of studies on this subject are available.This work aims to develop knowledge about comfort cooling for office buildings using DGCSs and expand upon design and operation practices for this technology. The findings presented in this work are based on experimental and simulation results. The experimental results build upon existing knowledge for operating cooling systems and substantiate new operation methods for the DGCSs. The experimental results are also used to develop and validate simulations. The simulation results facilitate investigating the short- and long-term thermal and energy performance of the DGCSs for various design circumstances.The borehole system design is usually performed independently from the building energy system design. In view of this work’s findings, considering the whole system (borehole, control system, terminal units) can enhance the design. A sub-system’s input design requirements can be aligned with the corresponding output of other sub-systems in a comprehensive design approach. This work demonstrates and quantifies that terminal units with slow response, such as thermally active building systems (TABS), can smooth out the daily peak heat rejection loads to the ground, resulting in shorter boreholes. Thus, the ground system can be much smaller than required for fast-response terminal units, such as active chilled beams. This work analyses different operation practices for DGCSs. The results suggest that allowing the room temperature to rise somewhat during the “on-peak” cooling loads can reduce the ground heat rejection loads, for which shorter boreholes can be designed. If combined with precooling the space during the “off-peak” cooling loads, a further reduction in the ground loads is yielded.This work also investigates the design and application of the DGCSs in existing office buildings. A systematic approach is provided to evaluate the influence of common renovation parameters on the design and energy performance of a DGCS. The systematic approach includes a step-by-step methodology to explain how sensitive the subsequent system design might be to the variations in the renovation parameters. Furthermore, the results quantify the potential electricity savings by using the DGCS instead of a chiller

    Direct-Ground Cooling Systems for Office Buildings: Design and Control Considerations

    Get PDF
    Direct-ground cooling systems are defined as systems in which the ground is used as the only source for cooling mainly in commercial buildings. These systems benefit from exchanging heat with the ground, of which its temperature is basically constant below a certain depth year around. Since electricity demand of these systems is only about driving the circulation pumps, the direct-ground cooling systems are among the most environmentally sustainable and energy efficient systems available for cooling buildings.This thesis is undertaken with a two-fold aim: presenting the design parameters of the ground-coupled systems, and evaluating the methods for controlling the cooling capacity of the direct-ground cooling systems. A comprehensive literature review has been performed on three main design parameters for the ground cooling systems, including ground thermal properties, borehole thermal resistance and building thermal load. All these parameters have been investigated regarding their influence on the energy demand of the system. The literature survey has been further extended to the terminal units operating with high-temperature chilled water, as they are suitable indoor heat terminal units for the direct-ground cooling application. The most common high temperature cooling terminal units have been studied regarding their working temperature levels and cooling capacities.Control methods for direct-ground cooling systems is the second major aspect studied in the present work. Two control methods, supply temperature control method and flow rate control method, have been applied to a ground-coupled ceiling cooling panel system and a fan-coil unit in laboratory settings. The experiments have been conducted in an office-scaled test room under different thermal indoor climates and heat gains. The results have shown that the design of the control system shall be done in relation to the flow rate limits in the building and ground loops, and the temperature levels of the ground. A high flow rate in the ground loop or in the building loop will not enhance the cooling capacity of the terminal units, but only caused increase in the energy use of the circulation pump. On the other hand, too low flow rate in the building loop increases the condensation risk on the pipes. This is because the supply water temperature in the building loop became closer to the ground temperature which is below the dew point of the space

    Combining direct ground cooling with ground-source heat pumps and district heating: Energy and economic analysis

    Get PDF
    Direct ground cooling (DGC) is a method used in cold climates to provide cooling to buildings without the use of any mechanical refrigeration. When DGC is utilized for providing cooling, ground-source heat pumps (GSHPs) and district heating (DH) are the two commonly used technologies for providing heating to the buildings. This article investigates the coupling of DGC with GSHPs and DH in terms of purchased energy and lifecycle costs. An office building equipped with active chilled beams for cooling and radiators for heating is used as a reference. Six cases based on different combinations of building envelope characteristics and thus different building heating and cooling loads are considered. The results show that using DGC-DH significantly reduces the amount of purchased electricity. However, the total energy cost is lower when DGC-GSHP is used. In addition, the DGC-GSHP can be more viable when the ground loads are well balanced. Investment costs, including borehole installation and equipment costs, are lower for the DGC-DH in the majority of the investigated cases. The lifecycle cost is lower for the DGC-DH in most of the investigated cases due to lower equipment costs

    Individually controlled localized chilled beam with background radiant cooling system: Human subject testing

    Get PDF
    This study examines the responses of twenty-four subjects to an individually-controlled localized chilled beam (LCB) and compares it to a mixing ventilation (MV) as the reference system. Both LCB and MV also used ceiling cooling (CC) panels for background cooling (forming LCBCC and MVCC systems). The LCB directed the supply air towards the subjects to create a micro-environment around them. Four experimental conditions were established using a combination of two room temperatures (26 \ub0C and 28 \ub0C) and two primary ventilation rates (10 l/s and 13 l/s). During the 90 min-long experiments, the subjects were asked to assess their perceived air quality, thermal sensation, comfort, air movement acceptability and acceptability of the work environment. The results indicated that the LCBCC was superior to the MVCC with significantly higher acceptability of the work environment, perceived air quality and thermal sensation. Perceived air quality and thermal sensation were rated near the “clearly acceptable” level for both room temperatures when LCBCC was used. Moreover, thermal sensation votes were close to the “neutral” level for room temperatures as high as 26 \ub0C and 28 \ub0C. The micro-environment established by the LCB was found to be resilient to changes in room temperature. With the MVCC, the thermal environment was rated as “slightly warm”. No major potential risk of draught among the subjects was reported when using the LCBCC. The findings of this study contribute to the development of high-temperature cooling systems in general, and localized ventilation systems in particular

    A comparative study on borehole heat exchanger size for direct ground coupled cooling systems using active chilled beams and TABS

    Get PDF
    Direct ground cooling is a method for cooling buildings whereby free cooling is provided by circulating water through borehole heat exchangers (BHEs). Since no refrigeration cooling is involved, supply water temperature to the building’s cooling system is dependent mainly on BHE sizing. This study investigates the sizing of BHEs for direct ground cooling systems, with a particular focus on the influence of terminal unit types and their operating strategies. Experimental results using a direct ground-coupled active chilled beam (ACB) system are used to develop a simulation model for an office building. The model is also modified for thermally activated building systems (TABS). The simulation results show that using TABS instead of ACBs for a similar BHE reduced the ground peak hourly loads, resulting in a lower borehole outlet temperature. Resizing BHE depth to reach similar maximum borehole outlet temperatures according to the actual heat extraction rate from the cooling systems resulted in a significantly shorter BHE depth with TABS compared to ACBs. However, indoor temperature was generally warmer with TABS, due to their slower heat extraction rate from the room. The findings are practical for analysing the design and operation of BHEs for different types of terminal units

    Cooling of office buildings in cold climates using direct ground-coupled active chilled beams

    Get PDF
    This study investigates the use of a direct ground cooling system (DGCS) using active chilled beams for the cooling of office buildings in Sweden. The methodology of the study entails laboratory experiments to develop and validate a simulation model of the cooling system. The sensitivity of the input parameters, such as borehole heat exchanger (BHE) length, internal heat gains and room temperature set point, are studied with respect to BHE outlet fluid temperature and room thermal comfort. The results provide a practical insight into designing DGCSs with regard to borehole outlet fluid temperatures. The results also show that the thermal comfort criteria in the room are met by applying the DGCS even under the most critical design conditions of undisturbed ground temperature and internal heat gains. The sensitivity study quantifies the influence of the room temperature setpoint and internal heat gain intensity on the BHE length. The BHE outlet temperature level is more sensitive in shorter BHEs than in the longer ones, and BHE length and room temperature levels are highly correlated. Thus, the sizing of DGCS can benefit from a control system to allow the room temperature to float within a certain range

    Influence of system operation on the design and performance of a direct ground-coupled cooling system

    Get PDF
    Sizing of borehole heat exchangers (BHEs) for direct ground cooling systems (DGCSs) is a critical part of the overall system design. This study investigates the thermal performance and sizing of a DGCS with two different operation strategies using experimental and simulation approaches. The traditional on/off operation strategy keeps a constant room temperature. The continuous operation strategy has the potential to reduce the building peak cooling loads by precooling the space and having a variable room temperature measures. The experimental results from the laboratory-scale setup show the differences in the hourly room heat extraction rates and the room temperature pattern for the operation strategies applied. The experimental data is also used to develop a simulation model. The simulation results show that applying the continuous strategy reduces the building peak cooling loads and lowers the heat injection rates to the ground. For new BHEs, applying the continuous strategy can result in shorter BHEs, owing to the significantly lower ground heat injection rates. For existing BHEs, applying the continuous strategy can decrease the borehole outlet fluid temperature and thus, increase the cooling capacity of the building cooling system. The findings of this study have implications for developing the widespread use of DGCSs

    Energy Renovation Strategies for Office Buildings using Direct Ground Cooling Systems

    Get PDF
    Direct ground cooling systems (DGCS) can provide comfort cooling to buildings without the use of any refrigeration-based cooling methods. DGCS is an emerging technology, commonly used for new office buildings in cold climates. This study aims at evaluating the energy-saving possibilities of a DGCS compared to a conventional chiller system for an existing office building. A typical Swedish office building with a chiller-based cooling system and in need of an energy renovation is taken as a reference case. A range of possible renovation measures are applied on the building and the cooling system, and the results are evaluated in terms of borehole design and building energy demand. The results show that applying the DGCS substantially reduces the building’s purchased energy, as chiller electricity demand is eliminated. In addition, implementing the renovation measures to reduce the thermal demand of the building could further reduce purchased energy. The results suggest implementing the DGCS after performing the renovation measures. This may lead to a considerable reduction in the required borehole length and hence, the drilling costs. Results from this study provide useful inputs for designing boreholes in ground-coupled systems for new and existing office buildings

    Resilient cooling strategies – A critical review and qualitative assessment

    Get PDF
    The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out

    Human subjective response to combined radiant and convective cooling by chilled ceiling combined with localized chilled beam

    No full text
    The aim of the present research is to identify human subjective response (health and comfort) to the micro-thermal environment established by integration of individually controlled localized chilled beam and chilled ceiling (LCBCC) system and to compare its performance with the performance of mixing ventilation combined with chilled ceiling (CCMV).Experiments were carried out in mock-up of an office (4.1 m × 4.0 m × 3.1 m, L× W× H) with one person under two summer temperature conditions (26 °C and 28 °C). To mimic direct solar radiation in the room, five radiative panels on the wall together with electrical sheets on the half of the floor were used. The test room was set-up with two desks, as two workstations, and one laptop on each table. The main workstation (WS1) was located close to the simulated window. The second work station (WS2) was placed in the opposite side of the room. The room was equipped with two types of ventilating and cooling systems.  The first system consisted of a localized active chilled beam (LCB) unit together with chilled ceiling (CC) panels. The LCB was installed above the WS1 to create micro-environment around the occupant sitting at the desk. The supply flow rate from the LCB could be adjusted by the occupant within the range of 10 L/s to 13 L/s by means of a desk-mounted knob. The integration of mixing ventilation (MV) system and chilled ceiling panels was the second ventilating and cooling strategy. Twenty- four subjects (12 female and 12 male) were exposed to different indoor environment established by two cooling systems. Each experiment session lasted 120 min and consisted of 30 min acclimatization period and 90 min exposure period. The performance of the systems was identified and compared by physical measurements of the generated environment and the response of the human subjects. The study showed that perceived air quality (PAQ), overall thermal sensation (OTS) acceptability and local thermal sensation (LTS) acceptability clearly improved inside the micro-environment by using LCBCC system. Moreover, at the main workstation, OTS and LTS votes were close to “neutral” thermal sensation (ASHRAE seven point scale) when LCBCC system was used. However, OTS and LTS votes increased to the “slightly warm” side of the scale by applying CCMV system which implied the better cooling performance of the LCBCC system. Acceptability of work environment apparently increased under the room condition generated by LCBCC system. In agreement with human subjective study, the results from physical measurements and thermal manikin study showed that uniform thermal condition was generated all over the room. Air and operative temperature distribution was almost uniform with no difference higher than 1 °C between the measured locations in the room. Thus, both LCBCC and CCMV systems performed equally well outside of the micro-environment region. The use of the chilled ceiling had impact on the airflow interaction in the room and changed the airflow pattern. It can be concluded that the combination of convective and radiative systems can be considered as an efficient strategy to generate acceptable thermal condition in rooms
    corecore