32 research outputs found

    Study of genetic variations of mitochondrial NADH dehydrogenase subunit 4 in Iranian women with breast cancer

    Get PDF
    Background: Breast cancer is the second reason of death in women population all around the world. One out of every eight women will be diagnosed with breast cancer in Iran. So, finding some clinical markers for prediction of cancer in the early stage is too important. There are many causes for cancer that mutation in the mitochondrial genome is one of the reasons, which had been observed in most breast cancer studies. The aim of this study was to evaluate the genetic region of ND4 in patients with breast cancer. Materials and Methods: This cross-sectional study was conducted on 60 women with breast cancer and 28 healthy women. DNA was extracted from paraffin blocks, the area mtND4 (11646-11860) was amplified by polymerase chain reaction, then the SSCP analysis was used to investigate different conformations between normal and cancer samples. Finally, each sample with different conformation was sequenced. Results: In this study, the sequence of mtND4 in 24 suspected patients was determined and 15 nucleotide changes were reported. the most variations was related to the G11719A polymorphism site. Other changes included 11803delT, G11717A, C11735T, C11716G, C11702T and A11812G. Conclusion: The findings of this study show new genetic changes in the mtND4. So, further studies are required to examine the role of these mutations to detect early breast cancer

    Quantitative Assessment of the Sensitivity of Various Commercial Reverse Transcriptases Based on Armored HIV RNA

    Get PDF
    The in-vitro reverse transcription of RNA to its complementary DNA, catalyzed by the enzyme reverse transcriptase, is the most fundamental step in the quantitative RNA detection in genomic studies. As such, this step should be as analytically sensitive, efficient and reproducible as possible, especially when dealing with degraded or low copy RNA samples. While there are many reverse transcriptases in the market, all claiming to be highly sensitive, there is need for a systematic independent comparison of their applicability in quantification of rare RNA transcripts or low copy RNA, such as those obtained from archival tissues.We performed RT-qPCR to assess the sensitivity and reproducibility of 11 commercially available reverse transcriptases in cDNA synthesis from low copy number RNA levels. As target RNA, we used a serially known number of Armored HIV RNA molecules, and observed that 9 enzymes we tested were consistently sensitive to ∼1,000 copies, seven of which were sensitive to ∼100 copies, while only 5 were sensitive to ∼10 RNA template copies across all replicates tested. Despite their demonstrated sensitivity, these five best performing enzymes (Accuscript, HIV-RT, M-MLV, Superscript III and Thermoscript) showed considerable variation in their reproducibility as well as their overall amplification efficiency. Accuscript and Superscript III were the most sensitive and consistent within runs, with Accuscript and Superscript II ranking as the most reproducible enzymes between assays.We therefore recommend the use of Accuscript or Superscript III when dealing with low copy number RNA levels, and suggest purification of the RT reactions prior to downstream applications (eg qPCR) to augment detection. Although the results presented in this study were based on a viral RNA surrogate, and applied to nucleic acid lysates derived from archival formalin-fixed paraffin embedded tissue, their relative performance on RNA obtained from other tissue types may vary, and needs future evaluation

    Identification of Sequence Variants in Genetic Disease-Causing Genes Using Targeted Next-Generation Sequencing

    Get PDF
    Identification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.To identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of the exons of 193 genes involved in 103 genetic diseases. To evaluate this technology, we selected 7 samples from seven patients with six different genetic diseases resulting from six disease-causing genes and 100 samples from normal human adults as controls. The data obtained showed that on average, 99.14% of 3,382 exons with more than 30-fold coverage were successfully detected using Targeted DNA-HiSeq technology, and we found six known variants in four disease-causing genes and two novel mutations in two other disease-causing genes (the STS gene for XLI and the FBN1 gene for MFS) as well as one exon deletion mutation in the DMD gene. These results were confirmed in their entirety using either the Sanger sequencing method or real-time PCR.Targeted DNA-HiSeq combines next-generation sequencing with the capture of sequences from a relevant subset of high-interest genes. This method was tested by capturing sequences from a DNA library through hybridization to oligonucleotide probes specific for genetic disorder-related genes and was found to show high selectivity, improve the detection of mutations, enabling the discovery of novel variants, and provide additional indel data. Thus, targeted DNA-HiSeq can be used to analyze the gene variant profiles of monogenic diseases with high sensitivity, fidelity, throughput and speed

    Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P)

    Get PDF
    BACKGROUND: Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA). We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann-Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P). The goal of this study was to clinically evaluate this assay. METHODS: Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin-conjugated fluorophore, the reactions were analyzed by Luminex IS100. Clinical evaluations were conducted using de-identified patient DNA samples. RESULTS: We evaluated a multiplexed suspension array assay that includes wild-type and mutant genetic determinations for Gaucher disease allele c.1448T>C. Two percent of samples reported to be wild-type by conventional methods were observed to be c.1448T>C heterozygous using our assay. Sequence analysis suggested that this phenomenon was due to co-amplification of the functional gene and a paralogous pseudogene (ΨGBA) due to a polymorphism in the primer-binding site of the latter. Primers for the amplification of this allele were then repositioned to span an upstream deletion in the pseudogene, yielding a much longer amplicon. Although it is widely reported that long amplicons negatively impact amplification or detection efficiency in recently adopted multiplex techniques, this assay design functioned properly and resolved the occurrence of false heterozygosity. CONCLUSION: Although previously available sequence information suggested GBA gene/pseudogene discrimination capabilities with a short amplified product, we identified common single-nucleotide polymorphisms in the pseudogene that required amplification of a larger region for effective discrimination

    Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities

    Get PDF
    The microbial world has been shown to hold an unimaginable diversity. The use of rRNA genes and PCR amplification to assess microbial community structure and diversity present biases that need to be analyzed in order to understand the risks involved in those estimates. Herein, we show that PCR amplification of specific sequence targets within a community depends on the fractions that those sequences represent to the total DNA template. Using quantitative, real-time, multiplex PCR and specific Taqman probes, the amplification of 16S rRNA genes from four bacterial species within a laboratory community were monitored. Results indicate that the relative amplification efficiency for each bacterial species is a nonlinear function of the fraction that each of those taxa represent within a community or multispecies DNA template. Consequently, the low-proportion taxa in a community are under-represented during PCR-based surveys and a large number of sequences might need to be processed to detect some of the bacterial taxa within the ‘rare biosphere’. The structure of microbial communities from PCR-based surveys is clearly biased against low abundant taxa which are required to decipher the complete extent of microbial diversity in nature

    Generation and Validation of a Shewanella oneidensis MR-1 Clone Set for Protein Expression and Phage Display

    Get PDF
    A comprehensive gene collection for S. oneidensis was constructed using the lambda recombinase (Gateway) cloning system. A total of 3584 individual ORFs (85%) have been successfully cloned into the entry plasmids. To validate the use of the clone set, three sets of ORFs were examined within three different destination vectors constructed in this study. Success rates for heterologous protein expression of S. oneidensis His- or His/GST- tagged proteins in E. coli were approximately 70%. The ArcA and NarP transcription factor proteins were tested in an in vitro binding assay to demonstrate that functional proteins can be successfully produced using the clone set. Further functional validation of the clone set was obtained from phage display experiments in which a phage encoding thioredoxin was successfully isolated from a pool of 80 different clones after three rounds of biopanning using immobilized anti-thioredoxin antibody as a target. This clone set complements existing genomic (e.g., whole-genome microarray) and other proteomic tools (e.g., mass spectrometry-based proteomic analysis), and facilitates a wide variety of integrated studies, including protein expression, purification, and functional analyses of proteins both in vivo and in vitro

    FEBS Lett.

    Get PDF
    AbstractThe tripeptide δ-l-α-aminoadipyl-l-cysteinyl-d-valine (LLD-ACV) is synthesised by the multifunctional enzyme ACV synthetase integrating four steps of the penicillin and cephalosporin biosynthetic pathway. Peptide synthesis follows the thiotemplate mechanism from intermediates bound as thioesters to the enzyme. The formation of δ-(l-α-aminoadipyl)-l-cysteinyl-thioester in the absence of l-valine was shown by isolation of the enzyme–substrate complex and cleavage of the covalently bound intermediate with performic acid. The dipeptide was recovered as cysteic acid or cysteic acid oxime and detected by HPLC and MALDI-TOF mass spectrometry. We conclude that the first peptide bond is formed between δ-carboxyl of l-aminoadipic acid and l-cysteine, followed by addition of the dipeptidyl intermediate to l-valine

    Klinische Charakterisierung von Staphylococcus epidermidis: ein systematisches Review

    No full text
    Staphylococci are known as clustering Gram-positive cocci, nonmotile, non-spore forming facultatively anaerobic that classified in two main groups, coagulase-positive and coagulase-negative. Staphylococcus epidermidis with the highest percentage has the prominent role among coagulase-negative Staphylococci that is the most important reason of clinical infections. Due to various virulence factors and unique features, this microorganism is respected as a common cause of nosocomial infections. Because of potential ability in biofilm formation and colonization in different surfaces, also using of medical implant devices in immunocompromised and hospitalized patients the related infections have been increased. In recent decades the clinical importance and the emergence of methicillin-resistant Staphylococcus epidermidis strains have created many challenges in the treatment process.Staphylokokken sind ein Cluster Gram-positiver unbeweglicher nicht Sporen-bildender fakultativ anaerober Kokkenbakterien, die in die zwei Hauptgruppen Coagulase-positiv and Coagulase-negativ unterteilt werden. Staphylococcus epidermidis nimmt mit dem höchsten Anteil eine prominente Stellung unter den Coagulase-negativen Staphylokokken ein und ist die wichtigste Ursache klinisch manifester Infektionen. Auf Grund der verschiedenen Virulenzfaktoren und der besonderen Eigenschaften ist diese Species häufig Ursache nosokomialer Infektionen. Auf Grund der Fähigkeit zur Biofilmbildung und der Kolonisation auf verschiedenen Oberflächen sowie auf Grund des zunehmenden Einsatzes von Implantaten bei hospitalisierten und speziell bei immunkompromittierten Patienten ist ein Anstieg derartiger Infektionen zu verzeichnen. In den letzten Jahrzehnten stellen die klinische Bedeutung und die Entstehung von Methicillin-resistenten Staphylococcus epidermidis -Stämmen neue Herausforderungen an den Behandlungsprozess
    corecore