1,821 research outputs found

    Accurate control of a Bose-Einstein condensate by managing the atomic interaction

    Full text link
    We exploit the variation of the atomic interaction in order to move ultra-cold atoms across an AC-driven periodic lattice. By breaking relevant symmetries, a gathering of atoms is achieved. Accurate control of the gathered atoms positions can be demonstrated via the control of the atomic localization process. The localization process is analyzed with the help of the nonlinear Floquet states where the Landau-Zener tunneling between states is observed and controlled. Transport effects in the presence of disorder are discussed.Comment: 14 pages, 5 Figures, PACS numbers: 03.75.Lm, 05.60.-k, 63.20.P

    Obstruction of Water Uptake in cut Chrysanthemum Stems after Dry Storage: Role of Wound-induced Increase in Enzyme Activities and Air Emboli

    Get PDF
    Hydraulic conductance of cut chrysanthemum stems was lowered by the aspiration of air as well as by a wound-induced plant response. By measuring the hydraulic conductance of stem segments in which air could be introduced into and/or removed from the xylem vessels at various times after harvest, we showed that the two processes, air aspiration and wound-induced reactions, occur independently. The pronounced xylem occlusion after a longer period of dry storage is due to the progress of the enzymatic wound-induced reaction in time superimposed on emboli due to aspired air. The wound-induced blockage was also present when air entrance was precluded from harvest. Measurements of enzyme activities in stems at time intervals from harvest showed that the activity of L- phenylalanine ammonia-lyase (PAL) increased after wounding in contrast to the activities of peroxidase and polyphenol oxidase. This suggests a major role of PAL in the xylem occlusion caused by wounding of the flower ste

    The Energy-dependent X-ray Timing Characteristics of the Narrow Line Seyfert 1 Mkn 766

    Get PDF
    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6+/-0.4 * 10^-4 Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.Comment: Accepted for publication in The Astrophysical Journal. 18 pages, 9 figures. Uses emulateapj5.st
    corecore