40 research outputs found

    A Proline-Rich Region with a Highly Periodic Sequence in Streptococcal beta Protein Adopts the Polyproline II Structure and Is Exposed on the Bacterial Surface.

    Get PDF
    Proline-rich regions have been identified in many surface proteins of pathogenic streptococci and staphylococci. These regions have been suggested to be located in cell wall-spanning domains and/or to be required for surface expression of the protein. Because little is known about these regions, which are found in extensively studied and biologically important surface proteins, we characterized the proline-rich region in one such protein, the beta protein of group B streptococci. The proline-rich region in beta, designated the XPZ region, has a proline at every third position, and the sequence is highly periodic in other respects. Immunochemical analysis showed that the XPZ region was not associated with the cell wall but was exposed on the bacterial surface. Moreover, characterization of a beta mutant lacking the XPZ region demonstrated that this region was not required for surface expression of the beta protein. Comparison of the XPZ region in different beta proteins showed that it varied in size but always retained the typical sequence periodicity. Circular dichroism spectroscopy indicated that the XPZ region had the structure of a polyproline II helix, an extended and solvent-exposed structure with exactly three residues per turn. Because of the three-residue sequence periodicity in the XPZ region, it is expected to be amphipathic and to have distinct nonpolar and polar surfaces. This study identified a proline-rich structure with unique properties that is exposed on the surface of an important human pathogen

    Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5

    Get PDF
    Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns. A key GBS virulence factor is its capsular polysaccharide (CPS), displaying terminal sialic acid (Sia) residues which block deposition and activation of complement on the bacterial surface. We recently demonstrated that GBS Sia can bind human CD33-related Sia-recognizing immunoglobulin (Ig) superfamily lectins (hCD33rSiglecs), a family of inhibitory receptors expressed on the surface of leukocytes. We report the unexpected discovery that certain GBS strains may bind one such receptor, hSiglec-5, in a Sia-independent manner, via the cell wall–anchored ÎČ protein, resulting in recruitment of SHP protein tyrosine phosphatases. Using a panel of WT and mutant GBS strains together with Siglec-expressing cells and soluble Siglec-Fc chimeras, we show that GBS ÎČ protein binding to Siglec-5 functions to impair human leukocyte phagocytosis, oxidative burst, and extracellular trap production, promoting bacterial survival. We conclude that protein-mediated functional engagement of an inhibitory host lectin receptor promotes bacterial innate immune evasion

    Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus

    Get PDF
    Group B Streptococcus (GBS) causes invasive infections in human newborns. We recently showed that the GBS beta-protein attenuates innate immune responses by binding to sialic acid-binding immunoglobulin-like lectin 5 (Siglec-5), an inhibitory receptor on phagocytes. Interestingly, neutrophils and monocytes also express Siglec-14, which has a ligand-binding domain almost identical to Siglec-5 but signals via an activating motif, raising the possibility that these are paired Siglec receptors that balance immune responses to pathogens. Here we show that beta-protein-expressing GBS binds to both Siglec-5 and Siglec-14 on neutrophils and that the latter engagement counteracts pathogen-induced host immune suppression by activating p38 mitogen-activated protein kinase (MAPK) and AKT signaling pathways. Siglec-14 is absent from some humans because of a SIGLEC14-null polymorphism, and homozygous SIGLEC14-null neutrophils are more susceptible to GBS immune subversion. Finally, we report an unexpected human-specific expression of Siglec-5 and Siglec-14 on amniotic epithelium, the site of initial contact of invading GBS with the fetus. GBS amnion immune activation was likewise influenced by the SIGLEC14-null polymorphism. We provide initial evidence that the polymorphism could influence the risk of prematurity among human fetuses of mothers colonized with GBS. This first functionally proven example of a paired receptor system in the Siglec family has multiple implications for regulation of host immunity

    Surface proteins of pathogenic streptococci

    No full text
    Streptococcus pyogenes (group A streptococcus) and the group B streptococcus (GBS) are two important human pathogens that cause different types of diseases and express different surface structures implicated in virulence. This thesis focuses on several surface proteins expressed by these pathogens, analyzing the biological function of these proteins and their ability to elicit protective immunity. R28 is a surface protein expressed by some strains of S. pyogenes isolated from cases of puerperal fever, suggesting that R28 may play a role in these infections. Molecular analysis of R28 showed that it is a novel member of a family of extremely repetitive surface proteins first identified through studies of the GBS proteins Rib and alfa. Like the Rib and alfa proteins, R28 was found to be a target for protective antibodies. Moreover, the R28 protein was found to act as an epithelial cell adhesin. Interestingly, the R28 and Rib proteins were shown to cross-react immunologically. This cross-reactivity was found to be surprisingly limited, but sufficient to confer cross-protective immunity between R28-expressing S. pyogenes strains and Rib-expressing GBS strains. Most GBS isolates express a polysaccharide capsule, which is the basis for serological typing of GBS. There are nine capsular serotypes of GBS, one of which, serotype V, has recently become increasingly important in GBS disease. Characterization of serotype V strains allowed identification of two novel GBS surface proteins, Fbs and “Rib-like”, which are targets for protective antibodies and therefore are interesting as possible components in a GBS vaccine. Interestingly, the “Rib-like” protein of type V strains was found to be closely related, if not identical, to the R28 protein of S. pyogenes. Both S. pyogenes and GBS express surface proteins that bind to the Fc part of human IgA. Little is known about the role of these interactions in pathogenesis. The IgA-binding proteins of S. pyogenes are M proteins, which are important virulence factors with antiphagocytic properties. The IgA-binding protein from GBS, the beta protein, is unrelated to the IgA-binding proteins from S. pyogenes. The binding site in IgA for the different streptococcal proteins was mapped to two hydrophobic loops in the Fc interdomain region. This region is also used by the human IgA-receptor CD89, an important mediator of IgA effector functions. In agreement with this result, the IgA-binding streptococcal proteins were found to inhibit binding of IgA to CD89. Thus, unrelated IgA-binding proteins from S. pyogenes and GBS bind the same region in IgA-Fc and may inhibit IgA effector function. The IgA-binding beta protein of GBS was found to contain a separate binding region for human factor H (FH), a plasma protein that regulates complement activation. Bacteria-bound FH retains its regulatory function, indicating that beta-expressing GBS may use FH to downregulate complement deposition and thereby inhibit phagocytosis

    The Streptococcal Blr and Slr Proteins Define a Family of Surface Proteins with Leucine-Rich Repeats: Camouflaging by Other Surface Structures

    No full text
    Regions with tandemly arranged leucine-rich repeats (LRRs) have been found in many prokaryotic and eukaryotic proteins, in which they provide a remarkably versatile framework for the formation of ligand-binding sites. Bacterial LRR proteins include the recently described Slr protein of Streptococcus pyogenes, which is related to internalin A of Listeria monocytogenes. Here, we show that strains of the human pathogen Streptococcus agalactiae express a protein, designated Blr, which together with Slr defines a family of internalin A-related streptococcal LRR proteins. Analysis with specific antibodies demonstrated that Blr is largely inaccessible on S. agalactiae grown in vitro, but surface exposure was increased ∌100-fold on mutants lacking polysaccharide capsule. In S. pyogenes, surface exposure of Slr was not affected in a mutant lacking hyaluronic acid capsule but was increased >20-fold in mutants lacking M protein or protein F. Thus, both Blr and Slr are efficiently camouflaged by other surface structures on bacteria grown in vitro. When Blr and Slr exposed on the bacterial surface were compared, they exhibited only little immunological cross-reactivity, in spite of extensive residue identity, suggesting that their surface-exposed parts have been under evolutionary pressure to diverge functionally and/or antigenically. These data identify a family of immunologically diverse streptococcal LRR proteins that show unexpected complexity in their interactions with other bacterial surface components

    Host-pathogen interactions in Streptococcus pyogenes infections, with special reference to puerperal fever and a comment on vaccine development.

    No full text
    Streptococcus pyogenes (group A streptococcus) causes a variety of diseases, including acute pharyngitis, impetigo, rheumatic fever and the streptococcal toxic shock syndrome. Moreover, S. pyogenes was responsible for the classical example of a nosocomial infection, the epidemics of puerperal fever (childbed fever) that caused the death of numerous women in earlier centuries. The most extensively studied virulence factor of S. pyogenes is the surface M protein, which inhibits phagocytosis and shows antigenic variation. Recent data indicate that many M proteins confer phagocytosis resistance because the variable N-terminal region has non-overlapping sites that specifically bind two components of the human immune system, the complement inhibitor C4b-binding protein (C4BP) and IgA-Fc. Concerning puerperal fever, molecular and epidemiological analysis suggests that the S. pyogenes surface protein R28 may have played a pathogenetic role in these epidemics. This article summarizes the properties of M protein and the R28 protein and considers a potential problem encountered in connection with the use of animal models for vaccine development

    Surface Proteins of Streptococcus agalactiae and Related Proteins in Other Bacterial Pathogens

    Get PDF
    Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines

    A novel bacterial resistance mechanism against human group IIA-secreted phospholipase A2: role of Streptococcus pyogenes sortase A.

    No full text
    International audienceHuman group IIA-secreted phospholipase A(2) (sPLA(2)-IIA) is a bactericidal molecule important for the innate immune defense against Gram-positive bacteria. In this study, we analyzed its role in the host defense against Streptococcus pyogenes, a major human pathogen, and demonstrated that this bacterium has evolved a previously unidentified mechanism to resist killing by sPLA(2)-IIA. Analysis of a set of clinical isolates demonstrated that an ~500-fold higher concentration of sPLA(2)-IIA was required to kill S. pyogenes compared with strains of the group B Streptococcus, which previously were shown to be sensitive to sPLA(2)-IIA, indicating that S. pyogenes exhibits a high degree of resistance to sPLA(2)-IIA. We found that an S. pyogenes mutant lacking sortase A, a transpeptidase responsible for anchoring LPXTG proteins to the cell wall in Gram-positive bacteria, was significantly more sensitive (~30-fold) to sPLA(2)-IIA compared with the parental strain, indicating that one or more LPXTG surface proteins protect S. pyogenes against sPLA(2)-IIA. Importantly, using transgenic mice expressing human sPLA(2)-IIA, we showed that the sortase A-mediated sPLA(2)-IIA resistance mechanism in S. pyogenes also occurs in vivo. Moreover, in this mouse model, we also showed that human sPLA(2)-IIA is important for the defense against lethal S. pyogenes infection. Thus, we demonstrated a novel mechanism by which a pathogenic bacterium can evade the bactericidal action of sPLA(2)-IIA and we showed that sPLA(2)-IIA contributes to the host defense against S. pyogenes infection
    corecore