21 research outputs found

    Research and development of hydrogen carrier based solutions for hydrogen compression and storage

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMIndustrial and public interest in hydrogen technologies has risen strongly recently, as hydrogen is the ideal means for medium to long term energy storage, transport and usage in combination with renewable and green energy supply. In a future energy system, the production, storage and usage of green hydrogen is a key technology. Hydrogen is and will in future be even more used for industrial production processes as a reduction agent or for the production of synthetic hydrocarbons, especially in the chemical industry and in refineries. Under certain conditions material based systems for hydrogen storage and compression offer advantages over the classical systems based on gaseous or liquid hydrogen. This includes in particular lower maintenance costs, higher reliability and safety. Hydrogen storage is possible at pressures and temperatures much closer to ambient conditions. Hydrogen compression is possible without any moving parts and only by using waste heat. In this paper, we summarize the newest developments of hydrogen carriers for storage and compression and in addition, give an overview of the different research activities in this fiel

    Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMHydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 'Energy Storage and Conversion based on Hydrogen' of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group 'Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage'. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storag

    Simulation and design of a three-stage metal hydride hydrogen compressor based on experimental thermodynamic data

    Full text link
    Los investigadores de la UAM pertenecen al MIRE-GroupA semi-empirical method was developed to design a three stage Metal Hydride Hydrogen Compressor (MHHC) through the determination of thermodynamic properties of several hydrides. As a first step, three AB2-type alloys that satisfy operation conditions were selected from published thermodynamic data entailing over 200 single plateau hydrides. These alloys were synthetized by arc melting and characterized by X-Ray Powder Diffraction (XRPD), Scanning Electron Microscopy (SEM) and Energy Dispersion X-ray spectroscopy (EDX). Absorption and desorption Pressure-composition-Isotherms (P-c-I) were determined between 23 and 80 C to characterize their thermodynamic properties. Subsequently, an algorithm that uses these experimental data and a real equation of state for gaseous H2 was implemented to simulate the volume, alloy mass, pressure and temperature of operation for each compressor stage, while optimizing the compression ratio and total number of compressed H2 moles. Optimal desorption temperatures for the three stages were identified within the range of 110e132 C. A system compression ratio (CR) of 92 was achieved. The number of H2 moles compressed, the alloy mass and volume of each stage depend linearly on the volume of the external tank in which the hydrogen is delivere

    Paper‑based broadband fexible photodetectors with van der Waals materials

    Full text link
    Layered metal chalcogenide materials are exceptionally appealing in optoelectronic devices thanks to their extraordinary optical properties. Recently, their application as flexible and wearable photodetectors have received a lot of attention. Herein, broadband and high-performance paper-based PDs were established in a very facile and inexpensive method by rubbing molybdenum disulfide and titanium trisulfide crystals on papers. Transferred layers were characterized by SEM, EDX mapping, and Raman analyses, and their optoelectronic properties were evaluated in a wavelength range of 405–810 nm. Although the highest and lowest photoresponsivities were respectively measured for TiS3 (1.50 mA/W) and MoS2 (1.13 μA/W) PDs, the TiS3–MoS2 heterostructure not only had a significant photoresponsivity but also showed the highest on/off ratio (1.82) and fast response time (0.96 s) compared with two other PDs. This advantage is due to the band offset formation at the heterojunction, which efficiently separates the photogenerated electron–hole pairs within the heterostructure. Numerical simulation of the introduced PDs also confirmed the superiority of TiS3–MoS2 heterostructure over the other two PDs and exhibited a good agreement with the experimental results. Finally, MoS2 PD demonstrated very high flexibility under applied strain, but TiS3 based PDs suffered from its fragility and experience a remarkable drain current reduction at strain larger than ± 0.33%. However, at lower strains, all PDs displayed acceptable performance

    Raman Fingerprint of Pressure-Induced Phase Transitions in TiS3Nanoribbons: Implications for Thermal Measurements under Extreme Stress Conditions

    Full text link
    Two-dimensional layered trichalcogenide materials have recently attracted the attention of the scientific community because of their robust mechanical and thermal properties and applications in opto- and nanoelectronics devices. We report the pressure dependence of out-of-plane Ag Raman modes in high quality few-layer titanium trisulfide (TiS3) nanoribbons grown using a direct solid-gas reaction method and infer their cross-plane thermal expansion coefficient. Both mechanical stability and thermal properties of the TiS3 nanoribbons are elucidated by using phonon-spectrum analyses. Raman spectroscopic studies at high pressure (up to 34 GPa) using a diamond anvil cell identify four prominent Ag Raman bands; a band at 557 cm-1 softens under compression, and others at 175, 300, and 370 cm-1 show normal hardening. Anomalies in phonon mode frequencies and excessive broadening in line width of the soft phonon about 13 GPa are attributed to the possible onset of a reversible structural transition. A complete structural phase transition at 43 GPa is inferred from the Ag soft mode frequency (557 cm-1) versus pressure extrapolation curve, consistent with recently reported theoretical predictions. Using the experimental mode Grüneisen parameters γi of Raman modes, we estimated the cross-plane thermal expansion coefficient Cv of the TiS3 nanoribbons at ambient phase to be 1.321 × 10-6 K-1. The observed results are expected to be useful in calibration and performance of next-generation nanoelectronics and optical devices under extreme stress condition

    A fast synthesis route of boron-carbon-nitrogen ultrathin layers towards highly mixed ternary B-C-N phases

    Full text link
    We report a direct and fast synthesis route to grow boron-carbon-nitrogen layers based on microwave-assisted plasma enhanced chemical vapour deposition (PECVD) by using methylamine borane as a single source molecular precursor. This easy and inexpensive method allows controlled and reproducible growth of B-C-N layers onto thin Cu foils. Their morphological, structural, chemical, optical and transport properties have been thoroughly characterized by a number of different microscopies, transport and spectroscopic techniques. Though disorder and segregation into C-rich and h-BN-rich domains have been observed in ultrathin flat few layers, high doping levels have been reached, inducing strong modifications of the electronic, optical and transport properties of C-rich and h-BN-rich phases. This synthesis procedure can open new routes towards the achievement of homogeneous highly mixed ternary B-C-N phase

    Low-cost and biodegradable thermoelectric devices based on van der Waals semiconductors on paper substrates

    Full text link
    We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates. The devices are based on thin films of WS2, Te, and BP (P-type semiconductors) and TiS3 and TiS2 (N-type semiconductors), deposited by simply rubbing powder of these materials against paper. The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of (+1.32 ± 0.27) mV/K and (-0.82 ± 0.15) mV/K for WS2 and TiS3, respectively. Additionally, Peltier elements were fabricated by interconnecting the P-type and N-type films with graphite electrodes. A thermopower value up to 6.11 mV/K was obtained when the Peltier element is constructed with three junctions. The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic device
    corecore