93 research outputs found

    An unexpected evolution of symptomatic mild middle cerebral artery (MCA) stenosis: asymptomatic occlusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intracranial localization of large artery disease is recognized as the main cause of ischemic stroke in the world, considering all countries, although its global burden is widely underestimated. Indeed it has been reported more frequently in Asians and African-American people, but the finding of intracranial stenosis as a cause of ischemic stroke is relatively common also in Caucasians. The prognosis of patients with stroke due to intracranial steno-occlusion is strictly dependent on the time of recanalization. Moreover, the course of the vessel involvement is highly dynamic in both directions, improvement or worsening, although several data are derived from the atherosclerotic subtype, compared to other causes.</p> <p>Case description</p> <p>We report the clinical, neurosonological and neuroradiological findings of a young woman, who came to our Stroke Unit because of the abrupt onset of aphasia during her work. An urgent neurosonological examination showed a left M1 MCA stenosis, congruent with the presenting symptoms; magnetic resonance imaging confirmed this finding and identified an acute ischemic lesion on the left MCA territory. The past history of the patient was significant only for a hyperinsulinemic condition, treated with metformine, and a mild overweight. At this time a selective cerebral angiography was not performed because of the patient refusal and she was discharged on antiplatelet and lipid-lowering therapy, having failed to identify autoimmune or inflammatory diseases. Within 1 month, she went back to our attention because of the recurrence of aphasia, lasting about ten minutes. Neuroimaging findings were unchanged, but the patient accepted to undergo a selective cerebral angiography, which showed a mild left distal M1 MCA stenosis.</p> <p>During the follow-up the patient did not experienced any recurrence, but a routine neurosonological examination found an unexpected evolution of the known MCA stenosis, i.e. left M1 MCA occlusion. Neuroradiological imaging did not identify new lesions of the brain parenchyma and a repeated selective cerebral angiography confirmed the left M1 MCA occlusion.</p> <p>Conclusions</p> <p>Regardless of the role of metabolic and/or inflammatory factors on the aetiology of the intracranial stenosis in this case, the course of the vessel disease was unexpected and previously unreported in the literature at our knowledge.</p

    Long-term prognosis of symptomatic isolated middle cerebral artery disease in Korean stroke patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to investigate the long-term mortality and recurrence rate of stroke in first-time stroke patients with symptomatic isolated middle cerebral artery disease (MCAD) under medical management.</p> <p>Methods</p> <p>We identified 141 first ever stroke patients (mean age, 64.4 ± 12.5 years; 53% male) with symptomatic isolated MCAD. MCAD was defined as significant stenosis of more than 50% or occlusion of the MCA as revealed by MR angiography. The median follow-up was 27.7 months. We determined a cumulative rate of stroke recurrence and mortality by Kaplan-Meier survival analyses and sought predictors using the Cox proportional hazard model.</p> <p>Results</p> <p>The cumulative composite outcome rate (stroke recurrence or any-cause death) was 14%, 19%, 22%, and 28% at years 1, 2, 3, and 5, respectively. The annual recurrence rate of stroke was 4.1%. The presence of diabetes mellitus was the only significant independent predictor of stroke recurrence or any cause of death in multivariate analyses of Cox proportional hazard model adjusted for any plausible potential confounding factors.</p> <p>Conclusions</p> <p>We estimated the long-term prognosis of stroke patients with isolated symptomatic MCAD under current medical management in Korea. Diabetes mellitus was found to be a significant predictor for stroke recurrence and mortality.</p

    Transcranial Doppler ultrasonography predicts cardiovascular events after TIA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transient ischemic attack (TIA) patients are at high vascular risk. We assessed the value of extracranial (ECD) and transcranial (TCD) Doppler and duplex ultrasonography to predict clinical outcome after TIA.</p> <p>Methods</p> <p>176 consecutive TIA patients admitted to the Stroke Unit were recruited in the study. All patients received diffusion-weighted imaging, standardized ECD and TCD. At a median follow-up of 27 months, new vascular events were recorded.</p> <p>Results</p> <p>22 (13.8%) patients experienced an ischemic stroke or TIA, 5 (3.1%) a myocardial infarction or acute coronary syndrome, and 5 (3.1%) underwent arterial revascularization. ECD revealed extracranial ≥ 50% stenosis or occlusions in 34 (19.3%) patients, TCD showed intracranial stenosis in 15 (9.2%) and collateral flow patterns due to extracranial stenosis in 5 (3.1%) cases. Multivariate analysis identified these abnormal ECD and TCD findings as predictors of new cerebral ischemic events (ECD: hazard ratio (HR) 4.30, 95% confidence interval (CI) 1.75 to 10.57, P = 0.01; TCD: HR 4.73, 95% CI 1.86 to 12.04, P = 0.01). Abnormal TCD findings were also predictive of cardiovascular ischemic events (HR 18.51, 95% CI 3.49 to 98.24, P = 0.001).</p> <p>Conclusion</p> <p>TIA patients with abnormal TCD findings are at high risk to develop further cerebral and cardiovascular ischemic events.</p

    Granulocyte-colony stimulating factor for stroke treatment: mechanisms of action and efficacy in preclinical studies

    Get PDF
    G-CSF is widely employed for the treatment of chemotherapy-induced neutropenia. Recently, neuroprotective effects of G-CSF in animal stroke models were discovered including infarct size reduction and enhancement of functional recovery. The underlying mechanisms of action of G-CSF in ischemia appear to be a direct anti-apoptotic activity in neurons and a neurogenesis inducing capacity. Additional effects may be based on the stimulation of new blood-vessel formation, the stimulation of immunocompetence and -modulation as well as on bone marrow mobilization. In addition to a discussion of these mechanisms, we will review the available preclinical studies and analyze their impact on the overall efficacy of G-CSF in experimental stroke

    Endothelial Progenitor Cells Predict Cardiovascular Events after Atherothrombotic Stroke and Acute Myocardial Infarction. A PROCELL Substudy.

    Get PDF
    Introduction: The aim of this study was to determine prognostic factors for the risk of new vascular events during the first 6 months after acute myocardial infarction (AMI) or atherothrombotic stroke (AS). We were interested in the prognostic role of endothelial progenitor cells (EPC) and circulating endothelial cells (CEC). Methods: Between February 2009 and July 2012, 100 AMI and 50 AS patients were consecutively studied in three Spanish centres. Patients with previously documented coronary artery disease or ischemic strokes were excluded. Samples were collected within 24h of onset of symptoms. EPC and CEC were studied using flow cytometry and categorized by quartiles. Patients were followed for up to 6 months. NVE was defined as new acute coronary syndrome, transient ischemic attack (TIA), stroke, or any hospitalization or death from cardiovascular causes. The variables included in the analysis included: vascular risk factors, carotid intima-media thickness (IMT), atherosclerotic burden and basal EPC and CEC count. Multivariate survival analysis was performed using Cox regression analysis. Results: During follow-up, 19 patients (12.66%) had a new vascular event (5 strokes; 3 TIAs; 4 AMI; 6 hospitalizations; 1 death). Vascular events were associated with age (P = 0.039), carotid IMT≥0.9 (P = 0.044), and EPC count (P = 0.041) in the univariate analysis. Multivariate Cox regression analysis showed an independent association with EPC in the lowest quartile (HR: 10.33, 95%CI (1.22-87.34), P = 0.032] and IMT≥0.9 [HR: 4.12, 95%CI (1.21-13.95), P = 0.023]. Conclusions: Basal EPC and IMT≥0.9 can predict future vascular events in patients with AMI and AS, but CEC count does not affect cardiovascular risk

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Metabolic syndrome predicts resistance to thrombolysis in stroke patients

    No full text
    corecore