17 research outputs found

    Gamma-Ray Burst Detection with INTEGRAL/SPI

    Get PDF
    The spectrometer SPI, one of the two main instruments of the INTEGRAL spacecraft, has strong capabilities in the Field of Gamma-Ray Burst (GRB) detections. In its 16 degree Field of view (FoV) SPI is able to trigger and to localize GRBs. With its large anticoincidence shield (ACS) of 512 kg of BGO crystals SPI is able to detect GRBs quasi omnidirectionally with a very high sensitivity. The ACS GRB alerts will provide GRB arrival times with high accuracy but with no or very rough positional information. The expected GRB detection rate in SPI's FoV will be one per month and for the ACS around 300 per year. At MPE two SPI software contributions to the real-time INTEGRAL burst-alert system (IBAS) at the INTEGRAL science data centre ISDC have been developed. The SPI-ACS branch of IBAS will produce burst alerts and light-curves with 50 ms resolution. It is planned to use ACS burst alerts in the 3rd interplanetary network. The SPI-FoV branch of IBAS is currently under development at MPE. The system is using the energy and timing information of single and multiple events detected by the Germanium-camera of SPI. Using the imaging algorithm developed at the University of Birmingham the system is expected to locate strong bursts with an accuracy of better than 1 degree.Comment: 11 pages, 5 figure

    Turn-key module for neutron scattering with sub-micro-eV resolution

    Get PDF
    We report the development of a compact turn-key module that boosts the resolution in quasi-elastic neutron scattering by several orders of magnitude down to the low sub-micro-eV range. It is based on a pair of neutron resonance spin flippers that generate a well defined temporal intensity modulation, also known as MIEZE (Modulation of IntEnsity by Zero Effort). The module may be used under versatile conditions, in particular in applied magnetic fields and for depolarising and incoherently scattering samples. We demonstrate the power of MIEZE in studies of the helimagnetic order in MnSi under applied magnetic fields

    NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62

    Get PDF
    NEMO is a ubiquitin-binding protein which regulates canonical NF-kappa B pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-kappa B-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including alpha-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at alpha-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62. Selective autophagy helps to degrade aggregated proteins accumulating in neurodegenerative diseases. Here, the authors show that NEMO, a ubiquitin binding protein previously linked to innate immune signaling, is recruited to misfolded proteins and promotes their autophagic clearance by forming condensates with the autophagy receptor p62

    Drivers for Policy Agreement in Nascent Subsystems: An Application of the Advocacy Coalition Framework to Fracking Policy in Switzerland and the UK

    Get PDF
    The study of public policy deals with subsystems in which actors cooperate or compete to turn their beliefs into policy solutions. Yet, most studies concern mature subsystems in which the main actors and their allies and enemies can easily be identified. This paper tackles the challenge of studying nascent subsystems, in which actors have begun to engage in politics but are uncertain about other actors’ beliefs. Actors therefore find it relatively difficult to identify their allies and opponents. Focusing on the Advocacy Coalition Framework, we examine three main ways in which actors might agree to support the same policy design before they decide whether or not to form long-term relationships within advocacy coalitions: they see the issue through the same lenses, they follow leaders, or they know each other from earlier cooperation. We use the case of fracking policy in Switzerland and the UK as a key example, in which actors have begun to agree with each other, but where final policy outputs were not yet defined, and long-term relationships not yet observable. We find that, when dealing with new issues, actors strongly rely on former contacts rather than shared ideologies or leadership

    Dynamics of polymeric additives in bicontinuous microemulsions adjacent to planar hydrophilic surfaces

    No full text
    Close to a planar surface, lamellar structures are imposed upon otherwise bulk bicontinuous microemulsions. Thermally induced membrane undulations are modified by the presence of the rigid interface. While it has been shown that pure membrane dynamics are accelerated close to the interface, we observed nearly unchanged relaxation rates for membranes spiked with large amphiphilic diblock copolymers with respect to the bulk. An increase of the polymer concentration by a factor of 2–3 for the first and second surfactant membrane layers was observed. We interpret the reduced relaxation times as the result of an interplay between the bending rigidity and the characteristic distance of the first surfactant membrane to the rigid interface, which causes the hydrodynamic and steric interface effects described in Seifert’s theory. The influence of these effects on decorated membranes yields a reduction of the frequencies and an amplification of the amplitudes of long-wavelength undulations, which are in accordance to our experimental findings

    A new fast detection system at the KWS-2 high-intensity SANS diffractometer of the JCNS at MLZ - prototype test

    Get PDF
    A new detection system based on an array of 3He tubes and innovative fast detection electronics was designed and produced by GE Reuter Stokes for the high-intensity small-angle neutron scattering diffractometer KWS-2, operated by the JĂŒlich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum (MLZ). The new detector consists of a panel array of 144 3He tubes and a new fast read-out electronics. The electronics is mounted in a closed case in the backside of the 3He tubes panel array and will operate at ambient atmosphere under cooling air stream. The new detection system is composed of eighteen 8-pack modules of 3He-tubes that work independently of one another (each unit has its own processor and electronics). Knowing beforehand the performance of one detector unit and of one single tube detector is prerequisite for tuning and maximizing the performance of the complete detection system. In this paper we present the results of the tests of the prototyped 8-pack of 3He-tubes and corresponding electronics, which have been carried out at the JCNS instruments KWS-2 (in high flux conditions) and TREFF

    The influence of a hierarchical porous carbon network on the coherent dynamics of a nanoconfined room temperature ionic liquid: A neutron spin echo and atomistic simulation investigation

    No full text
    The molecular-scale dynamic properties of the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, or [C4mim+][Tf2N−], confined in hierarchical microporous–mesoporous carbon, were investigated using neutron spin echo (NSE) and molecular dynamics (MD) simulations. Both NSE and MD reveal pronounced slowing of the overall collective dynamics, including the presence of an immobilized fraction of RTIL at the pore wall, on the time scales of these approaches. A fraction of the dynamics, corresponding to RTIL inside 0.75 nm micropores located along the mesopore surfaces, are faster than those of RTIL in direct contact with the walls of 5.8 nm and 7.8 nm cylindrical mesopores. This behavior is ascribed to the near-surface confined-ion density fluctuations resulting from the ion–ion and ion–wall interactions between the micropores and mesopores as well as their confinement geometries. Strong micropore–RTIL interactions result in less-coordinated RTIL within the micropores than in the bulk fluid. Increasing temperature from 296 K to 353 K reduces the immobilized RTIL fraction and results in nearly an order of magnitude increase in the RTIL dynamics. The observed interfacial phenomena underscore the importance of tailoring the surface properties of porous carbons to achieve desirable electrolyte dynamic behavior, since this impacts the performance in applications such as electrical energy storage devices

    Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease

    No full text
    Background: Myocardial perfusion imaging (MPI) is an accurate noninvasive test for patients with suspected obstructive coronary artery disease (CAD) and coronary artery calcium (CAC) score is known to be a powerful predictor of cardiovascular events. Collection of CAC scores simultaneously with MPI is unexplored. Aim: We aimed to investigate whether automatically derived CAC scores during myocardial perfusion imaging would further improve the diagnostic accuracy of MPI to detect obstructive CAD. Methods: We analyzed 150 consecutive patients without a history of coronary revascularization with suspected obstructive CAD who were referred for 82Rb PET/CT and available coronary angiographic data. Myocardial perfusion was evaluated both semi quantitatively as well as quantitatively according to the European guidelines. CAC scores were automatically derived from the low-dose attenuation correction CT scans using previously developed software based on deep learning. Obstructive CAD was defined as stenosis >70% (or >50% in the left main coronary artery) and/or fractional flow reserve (FFR) ≀0.80. Results: In total 58% of patients had obstructive CAD of which seventy-four percent were male. Addition of CAC scores to MPI and clinical predictors significantly improved the diagnostic accuracy of MPI to detect obstructive CAD. The area under the curve (AUC) increased from 0.87 to 0.91 (p: 0.025). Sensitivity and specificity analysis showed an incremental decrease in false negative tests with our MPI + CAC approach (n = 14 to n = 4), as a consequence an increase in false positive tests was seen (n = 11 to n = 28). Conclusion: CAC scores collected simultaneously with MPI improve the detection of obstructive coronary artery disease in patients without a history of coronary revascularization
    corecore