231 research outputs found
Uptake of minimally invasive surgery and stereotactic body radiation therapy for early stage non-small cell lung cancer in the USA
BACKGROUND: We aimed to assess the uptake of minimally invasive surgery (MIS) and stereotactic body radiation therapy (SBRT) among early stage (stage IA-IIB) non-small cell lung cancer (NSCLC) cases in the USA, and the rate of conversions from MIS to open surgery. MATERIALS AND METHODS: Data were obtained from the US National Cancer Database, a nationwide facility-based cancer registry capturing up to 70% of incident cancer cases in the USA. We included cases diagnosed with early stage (clinical stages IA-IIB) NSCLC between 2010 and 2014. In an ecological analysis, we assessed changes in treatment by year of diagnosis. Among surgically treated cases, we assessed the uptake of MIS and whether conversion to open surgery took place. For cases that received thoracic radiotherapy, we assessed the uptake of SBRT. RESULTS: Among 117 370 selected cases, radiotherapy use increased 3.4 percentage points between 2010 and 2014 (p<0.0001). Surgical treatments decreased 3.5 percentage points (p<0.0001). Rates of non-treatment remained stable (range: 10.0%-10.6% (p=0.4066)). Among surgically treated stage IA cases, uptake of MIS increased from 28.7% (95% CI 27.8% to 29.7%) in 2010 to 48.6% (95% CI 47.6% to 49
Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis
BACKGROUND: The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. RESULTS: NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. CONCLUSIONS: The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization
Treatment capacity required for full-scale implementation of lung cancer screening in the United States
BACKGROUND: Full-scale implementation of lung cancer screening in the United States will increase detection of early stages. This
study was aimed at assessing the capacity required for treating those cancers. METHODS: A well-established microsimulation model
was extended with treatment data from the National Cancer Database. We assessed how treatment demand would change when
implementing lung cancer screening in 2018. Three policies were assessed: 1) annual screening of current smokers and former smokers who quit fewer than 15 years ago, aged 55 to 80 years, with a smoking history of at least 30 pack-years (US Preventive Services
Task Force [USPSTF] recommendations); 2) annual screening of current smokers and former smokers who quit fewer than 15 years
ago, aged 55 to 77 years, with a smoking history of at least 30 pack-years (Centers for Medicare and Medicaid Services [CMS] recommendations); and 3) annual screening of current smokers and former smokers who quit fewer than 10 years ago, aged 55 to 75 years,
with a smoking history of at least 40 pack-years (the most cost-effective policy in Ontario [Ontario]). The base-case screening
adherence was a constant 50%. Sensitivity analyses assessed other adherence levels, including a linear buildup to 50% between 2018
and 2027. RESULTS: The USPSTF policy would require 37.0% more lung cancer surgeries in 2015-2040 than no screening, 2.2% less
radiotherapy, and 5.4% less chemotherapy; 5.7% more patients would require any therapy. The increase in surgical demand would be
96.1% in 2018, 46.0% in 2023, 38.3% in 2028, and 24.9% in 2040. Adherence strongly influenced results. By 2018, surgical demand
would range from 52,619 (20% adherence) to 96,121 (80%). With a gradual buildup of adherence, the increase in surgical demand
would be 9.6% in 2018, 38.3% in 2023, 42.0% in 2028, and 24.4% in 2040. Results for the CMS and Ontario policies were similar,
although the changes in comparison with no screening were smaller. CONCLUSIONS: Full-scale implementation of lung cancer
screening causes a major increase in surgical demand, with a peak within the first 5 years. A gradual buildup of adherence can spread
this peak over time. Careful surgical capacity planning is essential for successfully implementing screening. Cancer 2019;125:2039-2048.
© 2019 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made
Lung CD8+ T cells in COPD have increased expression of bacterial TLRs
Abstract
Background
Toll-like receptors (TLRs) on T cells can modulate their responses, however, the extent and significance of TLR expression by lung T cells, NK cells, or NKT cells in chronic obstructive pulmonary disease (COPD) is unknown.
Methods
Lung tissue collected from clinically-indicated resections (n = 34) was used either: (a) to compare the expression of TLR1, TLR2, TLR2/1, TLR3, TLR4, TLR5, TLR6 and TLR9 on lung CD8+ T cells, CD4+ T cells, NK cells and NKT cells from smokers with or without COPD; or (b) to isolate CD8+ T cells for culture with anti-CD3ε without or with various TLR ligands. We measured protein expression of IFN-γ, TNF-α, IL-13, perforin, granzyme A, granzyme B, soluble FasL, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL9 in supernatants.
Results
All the lung subsets analyzed demonstrated low levels of specific TLR expression, but the percentage of CD8+ T cells expressing TLR1, TLR2, TLR4, TLR6 and TLR2/1 was significantly increased in COPD subjects relative to those without COPD. In contrast, from the same subjects, only TLR2/1 and TLR2 on lung CD4+ T cells and CD8+ NKT cells, respectively, showed a significant increase in COPD and there was no difference in TLR expression on lung CD56+ NK cells. Production of the Tc1 cytokines IFN-γ and TNF-α by lung CD8+ T cells were significantly increased via co-stimulation by Pam3CSK4, a specific TLR2/1 ligand, but not by other agonists. Furthermore, this increase in cytokine production was specific to lung CD8+ T cells from patients with COPD as compared to lung CD8+ T cells from smokers without COPD.
Conclusions
These data suggest that as lung function worsens in COPD, the auto-aggressive behavior of lung CD8+ T cells could increase in response to microbial TLR ligands, specifically ligands against TLR2/1.http://deepblue.lib.umich.edu/bitstream/2027.42/112427/1/12931_2012_Article_1320.pd
Lessons We Learned Designing and Building the Chandra Telescope
2014 marks the crystal (15th) anniversary of the launch of the Chandra Xray Observatory. This paper offers some of the major lessons learned by some of the key members of the Chandra Telescope team. We offer some of the lessons gleaned from our experiences developing, designing, building and testing the telescope and its subsystems, with 15 years of hindsight. Among the topics to be discussed are the early developmental tests, known as VETAI and VETAII, requirements derivation, the impact of late requirements and reflection on the conservatism in the design process
Recommended from our members
Basal Gene Expression by Lung CD4+ T Cells in Chronic Obstructive Pulmonary Disease Identifies Independent Molecular Correlates of Airflow Obstruction and Emphysema Extent
Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD) progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a) stimulation induced minimal IFN-Îł or other inflammatory mediators, but many subjects produced more CCL2; (b) the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-Îł production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry); by contrast, unstimulated IFN-Îł transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent). Aberrant lung CD4+ T cells polarization appears to be common in advanced COPD, but also exists in some smokers with normal spirometry, and may contribute to development and progression of specific COPD phenotypes. Trial Registration ClinicalTrials.gov as NCT0028122
Lynx X-Ray Observatory: An Overview
Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget
IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells
Background Production of interferon (IFN)-gamma is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNgamma on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells.
Methods A549 cells were cultured and stimulated with interleukin (IL)-1beta alone or in combination with IFNgamma. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-kappaBalpha, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis.
Results Here we demonstrate that IFNgamma efficiently reduced IL-8 secretion under the influence of IL-1beta. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNgamma on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNgamma on IL-1beta-induced NF-kappaB activation as assessed by cellular IkappaB levels. Moreover, analysis of intracellular IL-8 suggests that IFNgamma modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1beta-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNgamma indicating that modulation of IL-1beta action by this cytokine displays specificity.
Conclusions Data presented herein agree with an angiostatic role of IFNgamma as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNgamma may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8
Regulated Expression of CCL21 in the Prostate Tumor Microenvironment Inhibits Tumor Growth and Metastasis in an Orthotopic Model of Prostate Cancer
Currently there are no curative therapies available for patients with metastatic prostate cancer. Thus, novel therapies are needed to treat this patient population. Immunotherapy represents one promising approach for the elimination of occult metastatic tumors. However, the prostate tumor microenvironment (TME) represents a hostile environment capable of suppressing anti-tumor immunity and effector cell function. In view of this immunosuppressive activity, we engineered murine prostate cancer cells with regulated expression (tet-on) of CCL21. Prostate tumor cells implanted orthotopically produced primary prostate tumors with predictable metastatic disease in draining lymph nodes and distant organs. Expression of CCL21 in the prostate TME enhanced survival, inhibited tumor growth and decreased the frequency of local (draining lymph node) and distant metastasis. Therefore, these studies provide a strong rationale for further evaluation of CCL21 in tumor immunity and its use in cancer immunotherapy
Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following the water trail from the interstellar medium to oceans
Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power ≥106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 μm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have <20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives
- …