105 research outputs found

    Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    Get PDF
    BACKGROUND: The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROΞ± (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. RESULTS: NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. CONCLUSIONS: The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

    Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic: CHEST Expert Panel Report

    Get PDF
    BACKGROUND:The risks from potential exposure to coronavirus disease 2019 (COVID-19), and resource reallocation that has occurred to combat the pandemic, have altered the balance of benefits and harms that informed current (pre-COVID-19) guideline recommendations for lung cancer screening and lung nodule evaluation. Consensus statements were developed to guide clinicians managing lung cancer screening programs and patients with lung nodules during the COVID-19 pandemic. METHODS:An expert panel of 24 members, including pulmonologists (n = 17), thoracic radiologists (n = 5), and thoracic surgeons (n = 2), was formed. The panel was provided with an overview of current evidence, summarized by recent guidelines related to lung cancer screening and lung nodule evaluation. The panel was convened by video teleconference to discuss and then vote on statements related to 12 common clinical scenarios. A predefined threshold of 70% of panel members voting agree or strongly agree was used to determine if there was a consensus for each statement. Items that may influence decisions were listed as notes to be considered for each scenario. RESULTS:Twelve statements related to baseline and annual lung cancer screening (n = 2), surveillance of a previously detected lung nodule (n = 5), evaluation of intermediate and high-risk lung nodules (n = 4), and management of clinical stage I non-small cell lung cancer (n = 1) were developed and modified. All 12 statements were confirmed as consensus statements according to the voting results. The consensus statements provide guidance about situations in which it was believed to be appropriate to delay screening, defer surveillance imaging of lung nodules, and minimize nonurgent interventions during the evaluation of lung nodules and stage I non-small cell lung cancer. CONCLUSIONS:There was consensus that during the COVID-19 pandemic, it is appropriate to defer enrollment in lung cancer screening and modify the evaluation of lung nodules due to the added risks from potential exposure and the need for resource reallocation. There are multiple local, regional, and patient-related factors that should be considered when applying these statements to individual patient care

    Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES) in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC.</p> <p>Methods</p> <p>We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression.</p> <p>Results</p> <p>There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS) patients (p = 0.007, 0.01, and 0.002, respectively). There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and <0.001, respectively) as well as stromal CXCR3 density (p = 0.003). There was a positive correlation between macrophage density and CXCR3 expression (r<sub>s </sub>= 0.520, p = 0.02) and between mast cell density and CXCR3 expression (r<sub>s </sub>= 0.499, p = 0.03) in the tumour islets.</p> <p>Conclusion</p> <p>Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets.</p

    IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    Get PDF
    Background Production of interferon (IFN)-gamma is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNgamma on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL)-1beta alone or in combination with IFNgamma. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-kappaBalpha, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNgamma efficiently reduced IL-8 secretion under the influence of IL-1beta. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNgamma on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNgamma on IL-1beta-induced NF-kappaB activation as assessed by cellular IkappaB levels. Moreover, analysis of intracellular IL-8 suggests that IFNgamma modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1beta-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNgamma indicating that modulation of IL-1beta action by this cytokine displays specificity. Conclusions Data presented herein agree with an angiostatic role of IFNgamma as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNgamma may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8

    Management of Lung Nodules and Lung Cancer Screening During the COVID-19 Pandemic: CHEST Expert Panel Report

    Get PDF
    Background: The risks from potential exposure to coronavirus disease 2019 (COVID-19), and resource reallocation that has occurred to combat the pandemic, have altered the balance of benefits and harms that informed current (pre-COVID-19) guideline recommendations for lung cancer screening and lung nodule evaluation. Consensus statements were developed to guide clinicians managing lung cancer screening programs and patients with lung nodules during the COVID-19 pandemic. / Methods: An expert panel of 24 members, including pulmonologists (n = 17), thoracic radiologists (n = 5), and thoracic surgeons (n = 2), was formed. The panel was provided with an overview of current evidence, summarized by recent guidelines related to lung cancer screening and lung nodule evaluation. The panel was convened by video teleconference to discuss and then vote on statements related to 12 common clinical scenarios. A predefined threshold of 70% of panel members voting agree or strongly agree was used to determine if there was a consensus for each statement. Items that may influence decisions were listed as notes to be considered for each scenario. / Results: Twelve statements related to baseline and annual lung cancer screening (n = 2), surveillance of a previously detected lung nodule (n = 5), evaluation of intermediate and high-risk lung nodules (n = 4), and management of clinical stage I non–small-cell lung cancer (n = 1) were developed and modified. All 12 statements were confirmed as consensus statements according to the voting results. The consensus statements provide guidance about situations in which it was believed to be appropriate to delay screening, defer surveillance imaging of lung nodules, and minimize nonurgent interventions during the evaluation of lung nodules and stage I non–small-cell lung cancer. / Conclusions: There was consensus that during the COVID-19 pandemic, it is appropriate to defer enrollment in lung cancer screening and modify the evaluation of lung nodules due to the added risks from potential exposure and the need for resource reallocation. There are multiple local, regional, and patient-related factors that should be considered when applying these statements to individual patient care

    Interleukin-8/CXCL8 is a growth factor for human lung cancer cells

    Get PDF
    Interleukin-8/CXCL8 (IL-8) is a chemokine and angiogenic factor. Recently, IL-8 was identified as an autocrine growth factor in several human cancers. Here, we investigated the expression and function of IL-8 in lung cancer cells. The expressions of IL-8 and its receptors, CXCR1 and CXCR2, were examined in a panel of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines. Using reverse transcription–polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay, we found that all NSCLC cell lines tested produced modest or high levels of IL-8 (up to 51 ng mlβˆ’1 106 cellsβˆ’1). Expression of CXCR1 and CXCR2 was found by RT–PCR and flow cytometry in two out of three cell lines. In contrast, SCLC cell lines produced very low or undetectable levels of IL-8, but expressed CXCR1 and CXCR2. We next investigated whether IL-8 could act as an autocrine growth factor in two NSCLC cell lines (H460 and MOR/P) expressing both IL-8 and its receptors. We found that cell proliferation was attenuated by anti-IL-8 neutralising antibody to 71 and 76% in H460 and MOR/P, respectively (P<0.05). Exogenous IL-8 significantly stimulated cell proliferation in four SCLC cell lines tested in a dose-dependent fashion. Cell proliferation was increased by between 18% (P<0.05) and 37% (P<0.05). Stimulation of cell proliferation by IL-8 was also demonstrated by analysis of proliferating cell nuclear antigen expression and cell cycle in H69 cells. Furthermore, we investigated which receptor(s) mediated the mitogenic function of IL-8 in lung cancer cells. We found that cell proliferation was significantly reduced by anti-CXCR1 antibody but not by anti-CXCR2 antibody. In conclusion, IL-8 can act as an autocrine and/or paracrine growth factor for lung cancer cells, and the mitogenic function of IL-8 in lung cancer is mediated mainly by CXCR1 receptor

    Regulated Expression of CCL21 in the Prostate Tumor Microenvironment Inhibits Tumor Growth and Metastasis in an Orthotopic Model of Prostate Cancer

    Get PDF
    Currently there are no curative therapies available for patients with metastatic prostate cancer. Thus, novel therapies are needed to treat this patient population. Immunotherapy represents one promising approach for the elimination of occult metastatic tumors. However, the prostate tumor microenvironment (TME) represents a hostile environment capable of suppressing anti-tumor immunity and effector cell function. In view of this immunosuppressive activity, we engineered murine prostate cancer cells with regulated expression (tet-on) of CCL21. Prostate tumor cells implanted orthotopically produced primary prostate tumors with predictable metastatic disease in draining lymph nodes and distant organs. Expression of CCL21 in the prostate TME enhanced survival, inhibited tumor growth and decreased the frequency of local (draining lymph node) and distant metastasis. Therefore, these studies provide a strong rationale for further evaluation of CCL21 in tumor immunity and its use in cancer immunotherapy

    Induction of interleukin-8 preserves the angiogenic response in HIF-1 alpha-deficient colon cancer cells

    Get PDF
    authorHypoxia inducible factor-1 (HIF-1) is considered a crucial mediator of the cellular response to hypoxia through its regulation of genes that control angiogenesis^1, ^2, ^3, ^4. It represents an attractive therapeutic target^5, ^6 in colon cancer, one of the few tumor types that shows a clinical response to antiangiogenic therapy^7. But it is unclear whether inhibition of HIF-1 alone is sufficient to block tumor angiogenesis^8, ^9. In HIF-1_Ξ± knockdown DLD-1 colon cancer cells (DLD-1^HIF-kd), the hypoxic induction of vascular endothelial growth factor (VEGF) was only partially blocked. Xenografts remained highly vascularized with microvessel densities identical to DLD-1 tumors that had wild-type HIF-1_Ξ± (DLD-1^HIF-wt). In addition to the preserved expression of VEGF, the proangiogenic cytokine interleukin (IL)-8 was induced by hypoxia in DLD-1^HIF-kd but not DLD-1^HIF-wt cells. This induction was mediated by the production of hydrogen peroxide and subsequent activation of NF-_KB. Furthermore, the KRAS oncogene, which is commonly mutated in colon cancer, enhanced the hypoxic induction of IL-8. A neutralizing antibody to IL-8 substantially inhibited angiogenesis and tumor growth in DLD-1^HIF-kd but not DLD-1^HIF-wt xenografts, verifying the functional significance of this IL-8 response. Thus, compensatory pathways can be activated to preserve the tumor angiogenic response, and strategies that inhibit HIF-1Ξ± may be most effective when IL-8 is simultaneously targeted
    • …
    corecore