447 research outputs found

    Quantum decoherence reduction by increasing the thermal bath temperature

    Full text link
    The well-known increase of the decoherence rate with the temperature, for a quantum system coupled to a linear thermal bath, holds no longer for a different bath dynamics. This is shown by means of a simple classical non-linear bath, as well as a quantum spin-boson model. The anomalous effect is due to the temperature dependence of the bath spectral profile. The decoherence reduction via the temperature increase can be relevant for the design of quantum computers

    Quantum effects in linguistic endeavors

    Full text link
    Classifying the information content of neural spike trains in a linguistic endeavor, an uncertainty relation emerges between the bit size of a word and its duration. This uncertainty is associated with the task of synchronizing the spike trains of different duration representing different words. The uncertainty involves peculiar quantum features, so that word comparison amounts to measurement-based-quantum computation. Such a quantum behavior explains the onset and decay of the memory window connecting successive pieces of a linguistic text. The behavior here discussed is applicable to other reported evidences of quantum effects in human linguistic processes, so far lacking a plausible framework, since either no efforts to assign an appropriate quantum constant had been associated or speculating on microscopic processes dependent on Planck's constant resulted in unrealistic decoherence times

    Two-dimensional solitary pulses in driven diffractive-diffusive complex Ginzburg-Landau equations

    Full text link
    Two models of driven optical cavities, based on two-dimensional Ginzburg-Landau equations, are introduced. The models include loss, the Kerr nonlinearity, diffraction in one transverse direction, and a combination of diffusion and dispersion in the other one (which is, actually, a temporal direction). Each model is driven either parametrically or directly by an external field. By means of direct simulations, stable completely localized pulses are found (in the directly driven model, they are built on top of a nonzero flat background). These solitary pulses correspond to spatio-temporal solitons in the optical cavities. Basic results are presented in a compact form as stability regions for the solitons in a full three-dimensional parameter space of either model. The stability region is bounded by two surfaces; beyond the left one, any two-dimensional (2D) pulse decays to zero, while quasi-1D pulses, representing spatial solitons in the optical cavity, are found beyond the right boundary. The spatial solitons are found to be stable both inside the stability region of the 2D pulses (hence, bistability takes place in this region) and beyond the right boundary of this region (although they are not stable everywhere). Unlike the spatial solitons, their quasi-1D counterparts in the form of purely temporal solitons are always subject to modulational instability, which splits them into an array of 2D pulses, that further coalesce into two final pulses. A uniform nonzero state in the parametrically driven model is also modulationally unstable, which leads to formation of many 2D pulses that subsequently merge into few ones.Comment: a latex text file and 11 eps files with figures. Physica D, in pres

    Non-Gaussian statistics and extreme waves in a nonlinear optical cavity

    Full text link
    A unidirectional optical oscillator is built by using a liquid crystal light-valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents a complex spatio-temporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field

    Contracting the Wigner kernel of a spin to the Wigner kernel of a particle

    Get PDF
    A general relation between the Moyal formalisms for a spin and a particle is established. Once the formalism has been set up for a spin, the phase-space description of a particle is obtained from contracting the group of rotations to the oscillator group. In this process, turn into a spin Wigner kernel turns into the Wigner kernel of a particle. In fact, only one out of 22s different possible kernels for a spin shows this behavior

    Long-lived Quantum Coherence between Macroscopically Distinct States in Superradiance

    Get PDF
    The dephasing influence of a dissipative environment reduces linear superpositions of macroscopically distinct quantum states (sometimes also called Schr\"odinger cat states) usually almost immediately to a statistical mixture. This process is called decoherence. Couplings to the environment with a certain symmetry can lead to slow decoherence. In this Letter we show that the collective coupling of a large number of two-level atoms to an electromagnetic field mode in a cavity that leads to the phenomena of superradiance has such a symmetry, at least approximately. We construct superpositions of macroscopically distinct quantum states decohering only on a classical time scale and propose an experiment in which the extraordinarily slow decoherence should be observable.Comment: 4 pages of revte

    Time interval distributions of atoms in atomic beams

    Full text link
    We report on the experimental investigation of two-particle correlations between neutral atoms in a Hanbury Brown and Twiss experiment. Both an atom laser beam and a pseudo-thermal atomic beam are extracted from a Bose-Einstein condensate and the atom flux is measured with a single atom counter. We determine the conditional and the unconditional detection probabilities for the atoms in the beam and find good agreement with the theoretical predictions.Comment: 4 pages, 3 figure

    Dependence of transient dynamics in a class-C laser upon variation of inversion with time

    Get PDF
    The transient statistics of a gain-switched coherently pumped class-C laser displays a linear correlation between the first passage time and subsequent peak intensity. Measurements are reported showing a positive or negative sign of this linear correlation, controlled through the switching time and the laser detuning. Further measurements of the small-signal laser gain combined with calculations involving a three-level laser model indicate that this sign fundamentally depends upon the way the laser inversion varies during the gain switching, despite the added dynamics of the laser polarization in the class-C laser. [S1050-2947(97)07112-6]
    • …
    corecore