55 research outputs found

    Genome sequence of the Ornithopus/Lupinus-nodulating Bradyrhizobium sp. strain WSM471

    Get PDF
    Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-(N-2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program

    Genome sequence of the Lebeckia ambigua-nodulating 'Burkholderia sprentiae' strain WSM5005T

    Get PDF
    "Burkholderia sprentiae" strain WSM5005(T) is an aerobic, motile, Gram-negative, non-sporeforming rod that was isolated in Australia from an effective N-2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of "Burkholderia sprentiae" strain WSM5005T, together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program

    Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense

    Get PDF
    Root nodule bacteria were isolated from Centrolobium paraense Tul. grown in soils from the Amazon region, State of Roraima (Brazil). 16S rRNA gene sequence analysis of seven strains (BR 10247(T), BR 10296, BR 10297, BR 10298, BR 10299, BR 10300 and BR 10301) placed them in the genus Bradyrhizobium with the closest neighbours being the type strains of Bradyrhizobium paxllaeri (98.8 % similarity), Bradyrhizobium icense (98.8 %), Bradyrhizobium lablabi (98.7 %), Bradyrhizobium jicamae (98.6 %), Bradyrhizobium elkanii (98.6 %), Bradyrhizobium pachyrhizi (98.6%) and Bradyrhizobium retamae (98.3 %). This high similarity, however, was not confirmed by the intergenic transcribed spacer (ITS) 16S-23S rRNA region sequence analysis nor by multi-locus sequence analysis. Phylogenetic analyses of five housekeeping genes (dnaK, gin/I, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EKO5(T) (=LMG 24129(T)) to. be the most closely related type strain (95.7% sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [major components being C-16:0 and summed feature 8 (18:1 omega 6c/18:1 omega 7c)] DNA G+C content, slow growth rate and carbon compound utilization patterns, supported the placement of the novel strains in the genus Bradyrhizobium. Results of DNA-DNA relatedness studies and physiological data (especially carbon source utilization) differentiated the strains from the closest recognized species of the genus Bradyrhizobium. Symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nil/-I) placed the novel species in a new branch within the genus Bradyrhizobium. Based on the current data, these seven strains represent a novel species for which the name Bradyrhizobium neotropicale sp. nov. is proposed. The type strain is BR 10247(T) (=HAMBI 3599(T))

    Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil

    Get PDF
    Background: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica. Here we have provided an updated taxonomy for STM 6070 and described salient features of the annotated genome, focusing on heavy metal resistance (HMR) loci and heavy metal efflux (HME) systems. Results: The 6,771,773 bp high-quality-draft genome consists of 107 scaffolds containing 6118 protein-coding genes. ANI values show that STM 6070 is a new species of Cupriavidus. The STM 6070 symbiotic region was syntenic with that of the M. pudica-nodulating Cupriavidus taiwanensis LMG 19424T . In contrast to the nickel and zinc sensitivity of C. taiwanensis strains, STM 6070 grew at high Ni2+ and Zn2+ concentrations. The STM 6070 genome contains 55 genes, located in 12 clusters, that encode HMR structural proteins belonging to the RND, MFS, CHR, ARC3, CDF and P-ATPase protein superfamilies. These HMR molecular determinants are putatively involved in arsenic (ars), chromium (chr), cobalt-zinc-cadmium (czc), copper (cop, cup), nickel (nie and nre), and silver and/or copper (sil) resistance. Seven of these HMR clusters were common to symbiotic and non-symbiotic Cupriavidus species, while four clusters were specific to STM 6070, with three of these being associated with insertion sequences. Within the specific STM 6070 HMR clusters, three novel HME-RND systems (nieIC cep nieBA, czcC2B2A2, and hmxB zneAC zneR hmxS) were identified, which constitute new candidate genes for nickel and zinc resistance

    Complete genome sequence of rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers

    Get PDF
    Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is manufactured commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924, 660,973, 516,088, 350,312 and 294,782 bp.<br /

    Complete genome sequence of Rhizobium leguminosarum bv trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum.

    Get PDF
    Rhizobium leguminosarum bv trifolii is the effective nitrogen fixing microsymbiont of a diverse range of annual and perennial Trifolium (clover) species. Strain WSM2304 is an aerobic, motile, non-spore forming, Gram-negative rod, isolated from Trifolium polymorphum in Uruguay in 1998. This microsymbiont predominated in the perennial grasslands of Glencoe Research Station, in Uruguay, to competitively nodulate its host, and fix atmospheric nitrogen. Here we describe the basic features of WSM2304, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a nitrogen fixing microsymbiont of a clover species from the American center of origin. We reveal that its genome size is 6,872,702 bp encoding 6,643 protein-coding genes and 62 RNA only encoding genes. This multipartite genome was found to contain 5 distinct replicons; a chromosome of size 4,537,948 bp and four circular plasmids of size 1,266,105 bp, 501,946 bp, 308,747 bp and 257,956 bp

    The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes

    Full text link
    Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade

    Genome sequence of the lupin-nodulating Bradyrhizobium sp. strain WSM1417

    Get PDF
    Bradyrhizobium sp. strain WSM1417 is an aerobic, motile, Gram-negative, non-sporeforming rod that was isolated from an effective nitrogen (N-2) fixing root nodule of Lupinus sp. collected in Papudo, Chile, in 1995. However, this microsymbiont is a poorly effective N2 fixer with the legume host Lupinus angustifolius L.; a lupin species of considerable economic importance in both Chile and Australia. The symbiosis formed with L. angustifolius produces less than half of the dry matter achieved by the symbioses with commercial inoculant strains such as Bradyrhizobium sp. strain WSM471. Therefore, WSM1417 is an important candidate strain with which to investigate the genetics of effective N2 fixation in the lupin-bradyrhizobia symbioses. Here we describe the features of Bradyrhizobium sp. strain WSM1417, together with genome sequence information and annotation. The 8,048,963 bp high-quality-draft genome is arranged in a single scaffold of 2 contigs, contains 7,695 protein-coding genes and 77 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program

    Genome sequence of the lupin-nodulating Bradyrhizobium sp. strain WSM1417

    Get PDF
    Bradyrhizobium sp. strain WSM1417 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N(2)) fixing root nodule of Lupinus sp. collected in Papudo, Chile, in 1995. However, this microsymbiont is a poorly effective N(2) fixer with the legume host Lupinus angustifolius L.; a lupin species of considerable economic importance in both Chile and Australia. The symbiosis formed with L. angustifolius produces less than half of the dry matter achieved by the symbioses with commercial inoculant strains such as Bradyrhizobium sp. strain WSM471. Therefore, WSM1417 is an important candidate strain with which to investigate the genetics of effective N(2) fixation in the lupin-bradyrhizobia symbioses. Here we describe the features of Bradyrhizobium sp. strain WSM1417, together with genome sequence information and annotation. The 8,048,963 bp high-quality-draft genome is arranged in a single scaffold of 2 contigs, contains 7,695 protein-coding genes and 77 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program

    Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1

    Get PDF
    Rhizobium leguminosarum bv. trifolii strain TA1 is an aerobic, motile, Gram-negative, non-spore-forming rod that is an effective nitrogen fixing microsymbiont on the perennial clovers originating from Europe and the Mediterranean basin. TA1 however is ineffective with many annual and perennial clovers originating from Africa and America. Here we describe the features of R. leguminosarum bv. trifolii strain TA1, together with genome sequence information and annotation. The 8,618,824 bp high-quality-draft genome is arranged in a 6 scaffold of 32 contigs, contains 8,493 protein-coding genes and 83 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program
    • …
    corecore